Skip to main content

QML Blind Deconvolution: Asymptotic Analysis

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

Blind deconvolution is considered as a problem of quasi maximum likelihood (QML) estimation of the restoration kernel. Simple closed-form expressions for the asymptotic estimation error are derived. The asymptotic performance bounds coincide with the Cramér-Rao bounds, when the true ML estimator is used. Conditions for asymptotic stability of the QML estimator are derived. Special cases when the estimator is super-efficient are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bellini, S., Rocca, F.: Near optimal blind deconvolution. In: Proc. of IEEE Conf. Acoust., Speech, Sig. Proc. (1988)

    Google Scholar 

  2. Cardoso, J.F., Laheld, B.: Equivariant adaptive source separation. IEEE Trans. Sig. Proc. 44, 3017–3030 (1996)

    Article  Google Scholar 

  3. Shalvi, O., Weinstein, E.: Maximum likelihood and lower bounds in system identification with non-Gaussian inputs. IEEE Trans. Information Theory 40, 328–339 (1994)

    Article  MathSciNet  Google Scholar 

  4. Yellin, D., Friedlander, B.: Multichannel system identification and deconvolution: performance bounds. IEEE Trans. Sig. Proc. 47, 1410–1414 (1999)

    Article  Google Scholar 

  5. Pham, D., Garrat, P.: Blind separation of a mixture of independent sources through a quasimaximum likelihood approach. IEEE Trans. Sig. Proc. 45, 1712–1725 (1997)

    Article  Google Scholar 

  6. Cardoso, J.F.: Blind signal separation statistical principles. Proc. IEEE. Special issue on blind source separation 9, 2009–2025 (1998)

    Google Scholar 

  7. Amari, S.I., Cichocki, A., Yang, H.H.: Novel online adaptive learning algorithms for blind deconvolution using the natural gradient approach. In: Proc. SYSID, pp. 1057–1062 (1997)

    Google Scholar 

  8. Zibulevsky, M.: Sparse source separation with relative Newton method. In: Proc. ICA 2003, pp. 897–902 (2003)

    Google Scholar 

  9. Amari, S.I., Douglas, S.C., Cichocki, A., Yang, H.H.: Multichannel blind deconvolution and equalization using the natural gradient. In: Proc. SPAWC, pp. 101–104 (1997)

    Google Scholar 

  10. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M.: Blind deconvolution with relative Newton method. Technical Report 444, Technion, Israel (2003)

    Google Scholar 

  11. Kisilev, P., Zibulevsky, M., Zeevi, Y.: Multiscale framework for blind source separation. JMLR (2003) (in press)

    Google Scholar 

  12. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Quasi maximum likelihood blind deconvolution: Asymptotic performance analysis. IEEE Info. Theory (2004) (submitted), Online http://visl.technion.ac.il/bron/alex

  13. Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Asymptotic performance analysis of MIMO blind deconvolution. Technical report, Technion, Israel (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y. (2004). QML Blind Deconvolution: Asymptotic Analysis. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_86

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics