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Abstract. The supervised learning algorithms assume that the training data has 
a fixed set of predicting attributes and a single-dimensional class which con-
tains the class label of each training example. However, many real-world do-
mains may contain several objectives each characterized by its own set of la-
bels. Though one may induce a separate model for each objective, there are 
several reasons to prefer a shared multi-objective model over a collection of 
single-objective models. We present a novel, greedy algorithm, which builds a 
shared classification model in the form of an ordered (oblivious) decision tree 
called Multi-Objective Info-Fuzzy Network (M-IFN). We compare the M-IFN 
structure to Shared Binary Decision Diagrams and bloomy decision trees and 
study the information-theoretic properties of the proposed algorithm. These 
properties are further supported by the results of empirical experiments, where 
we evaluate M-IFN performance in terms of accuracy and readability on real-
world multi-objective tasks from several domains.  
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1   Introduction 

Mitchell [25] defines the classification task as “to classify examples into one of a 
discrete set of possible categories” (p. 54). This definition is very similar to the one 
provided by Fayyad et al. [12]. Such formulation of the classification problem sub-
sumes that the class labels (categories) in question are mutually exclusive, i.e. an 
object cannot belong to more than one class at the same time. In the training set, the 
class of each instance is given by one of its attributes, called the class label attribute 
[15]. Over the years, a wide range of supervised learning algorithms have been devel-
oped for inducing classification models from “labeled” training examples, i.e. data 
items with non-empty values of the class label attribute. Examples include the Back-
propagation algorithm [25], Naïve Bayes Classifier [25], C4.5 [27], IFN [23], and 
many others. 

As indicated in [7] and [29], the assumption that a learning task has only one ob-
jective is very restrictive. Data objects in many real-world databases may be simulta-
neously assigned multiple class labels related to multiple tasks. These objectives (di-
mensions) may be strongly related to each other, completely unrelated, or just weakly 
related. Examples include student's grades in several courses, symptoms and diagno-
ses of a given patient, phonemes and stresses associated with a given word [10], etc. 
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Time series prediction (see [19]) is another learning task, where each sequential ob-
servation (e.g., daily stock price) is an objective in its own right. More examples of 
concurrent learning tasks are described in [6]. 

The most straightforward approach to the problem of multi-objective classification 
is to induce a separate model for each objective using any single-objective classifica-
tion algorithm. Though the resulting models may be the best (e.g., the most accurate) 
ones for every individual objective, the user may find a single multi-objective model 
much more comprehensible than a collection of single-objective models. In non-
stationary processes (see [20]), storage and maintenance of multiple models may 
become a tedious task. Moreover, as demonstrated by Caruana [6], the combination of 
several classification tasks in a single model may even increase the overall predictive 
accuracy. 

To provide a unified framework for single-objective and multi-objective classifica-
tion, we study here an extended classification task which includes the following com-
ponents (based on [23] and [29]): 

• R = (A1,..., An) - a set of n candidate input features (n ≥ 1), where Ai is an attribute 
i. The values of these attributes (features) can be used to predict the values of class 
dimensions (see next). 

• O= (C1,…, Cm) - a non-empty subset of m class dimensions (m ≥ 1). This is a sub-
set of tasks (objectives) to predict. The extended classification task is to build an 
accurate model (or models) for predicting the values of all class dimensions, based 
on the corresponding dependency subset (or subsets) I ⊆ R of input features. 

Section 2 of this paper discusses the related work. The methodology for inducing 
Multi-Objective Info-Fuzzy Networks is presented in Section 3. We are also trying to 
answer the following critical questions: why multi-objective models should work 
better than single-objective models and when the proposed algorithm is expected to 
maximize the predictive accuracy of the induced model. To show the practical signifi-
cance of our theoretical findings, Section 4 compares the performance of single-
objective and multi-objective models in terms of predictive accuracy and model sim-
plicity. The empirical comparison is based on three multi-objective classification 
tasks from the areas of web mining, meteorology, and microbiology. Finally, in Sec-
tion 5, we sum-up the presented methodology and discuss open problems in multi-
objective classification.  

2   Related Work 

Based on the framework in Section 1 above, the Single-Objective Classification task 
can be extended to the Multi-Objective Classification task of simultaneously predict-
ing the values of several class dimensions for a given object. The Multi-Objective 
Classification task is different from Multitask Learning described by Caruana in [6]. 
The explicit goal of Multitask Learning is to improve the accuracy of predicting the 
values of a single-dimensional class (defined as the main learning task) by training 
the classification model, such as a neural network or a decision tree, on several re-
lated tasks (additional class dimensions). This is called inductive transfer between 
learning tasks. As emphasized by [6], the only concern of Multitask Learning is the 
generalization accuracy of the model, not its intelligibility. "The reason for training 
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multiple tasks on one learner is so one task can benefit from the information con-
tained in the training signals of other tasks, not to reduce the number of models that 
must be learned" ([6], p. 68). In contrast to [6], this paper focuses on multi-objective 
classification rather than on multi-task learning, since it proposes a model for simul-
taneous prediction of equally important class dimensions. 

A multi-objective classifier called a bloomy decision tree is presented in [29]. Like 
ID3 and C4.5, it employs a “divide and conquer” strategy by recursively partitioning 
the training set. However its leaf nodes (called flower nodes) may predict only a sub-
set of class dimensions. Recursive partitioning along a given path continues as long as 
there are unpredicted class dimensions left. Consequently, the same path may include 
a “sandwich” of several flower and split nodes, which need to be traversed in order to 
predict the values of all class dimensions. This approach significantly increases the 
total number of internal nodes in a tree (each path may have a flower node for every 
dimension), while reducing the number of dimensions predicted by smaller partitions 
of the training set (known as the fragmentation problem).  

Representation of multiple-output functions, where all outputs are equally impor-
tant, is a well-known problem in VLSI design, system testing, and other areas of 
computer science. Binary Decision Diagrams [5][24] are commonly used for repre-
senting single-output and multiple-output Boolean functions due to their time and 
space efficiency. A Binary Decision Diagram is a rooted acyclic graph containing two 
types of vertices: non-terminal vertices related to input variables and terminal vertices 
representing the possible output values of a Boolean function. A Function Graph [5] 
is an ordered Binary Decision Diagram, where the input variables appear in the same 
order on every path of the graph. As shown by Bryant  in [5], each Boolean function 
has a unique (up to isomorphism) reduced function graph representation, while any 
other function graph denoting the same function contains more vertices. 

Function graphs can be easily enhanced for representation of multi-input multi-
output functions (see [24]). The idea is to construct a Shared Binary Decision Dia-
gram with multiple roots (one for each output variable) [1]. The number of terminal 
nodes in a typical Shared Binary Decision Diagram is two as long as all functions are 
assumed to have binary outputs only. Such a diagram can be easily converted into a 
decision tree, where the top level(s) are used for output selection [2]. 

Kohavi ([17] and [18]) has extended the internal structure of non-shared (i.e. sin-
gle-objective) Multi-Terminal Binary Decision Diagrams by allowing any number of 
outgoing edges at non-terminal nodes. Kohavi has called his model an Oblivious 
Read-Once Decision Graph (OODG). As explained in [18], "read-once" means that 
each nominal feature is tested at most once along any path, which is a common prop-
erty of most decision-tree algorithms such as C4.5 [27]. The name "oblivious" indi-
cates the fact that all nodes at a given level are labeled by the same feature. As indi-
cated above, the same ordering restriction is imposed by Bryant [5] on Function 
Graphs. An entropy-based algorithm for inducing oblivious read-once decision trees 
and decision graphs from data is described and evaluated in [18]. The extensive ex-
periments performed on benchmark datasets have revealed no consistent difference 
between the accuracy of Kohavi’s algorithm and C4.5: on average, both methods 
perform the same. However, in terms of representation, the experiments have clearly 
shown the capability of the OODG algorithm to produce smaller models than C4.5 for 
most datasets. This empirical result supports the theorem proven by Bryant in [5] that 
each Boolean function has a unique function graph representation having a minimal 
number of vertices. 
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A single-objective Info-Fuzzy Network (see [21] and [23]) has nearly the same 
structure as an oblivious read-once decision graph with two important differences: it 
extends the “read-once” restriction of [18] to continuous features by allowing multi-
way splits of a continuous domain at the same level and it associates probability esti-
mates rather than categorical predictions with each leaf node. The predicted value of a 
categorical class dimension at a terminal node is found by the popular maximum a 
posteriori rule: the predicted class is the one with the highest probability [21]. In case 
of a continuous class dimension, its predicted value is calculated as the mean value of 
all training cases associated with the particular terminal node. As demonstrated in 
[21], the single-objective Info-Fuzzy Network induction algorithm produces much 
more compact models than C4.5, while preserving nearly the same level of classifica-
tion accuracy. The rest of this paper is dedicated to adaptation of info-fuzzy networks 
to the task of multi-objective classification. The "fuzzy" aspect of info-fuzzy networks 
is related to evaluation of data reliability and it is beyond the scope of this paper. An 
interested reader is referred to [23] for details. 

3   Multi-objective Info-Fuzzy Networks 

3.1   Definition of Network Structure 

We assume that a multi-objective info-fuzzy network (M-IFN) has a single root node 
and its internal "read-once" structure is identical for all class dimensions. This means 
that every internal node is shared among all objectives, which makes M-IFN an ex-
treme case of a Shared Binary Decision Diagram, where only some nodes are shared 
among several output functions (see [5] and [24]). This also means that each terminal 
(leaf) node is connected to at least one target node associated with a value of every 
class dimension. “Flower nodes” connected to only a subset of class dimensions are 
not allowed in M-IFNs. 

M-IFNs are different from multitask decision trees [6] and bloomy decision trees 
[29] in two additional aspects: they are function graphs, since they have an oblivious 
read-once structure and they are also probability estimation trees [26], since the same 
terminal node may be related to several values of the same class dimension. Based on 
the properties of shared binary decision diagrams and function graphs (see [5]), we 
believe that the proposed structure should produce compact multi-objective models. 
Our hypothesis is tested empirically in Section 4 of this paper.  

The algorithms for inducing single-objective networks from training data have 
been thoroughly described in previous works (see [21] and [23]). A novel algorithm 
for constructing a multi-objective network is presented in the next sub-section. 

3.2   The M-IFN Construction Algorithm 

The M-IFN induction procedure starts with defining the target layer, which has a node 
for each category, or value, of every class dimension and the “root” node representing 
an empty set of input attributes. The direct connections between the root node and the 
target nodes represent unconditional (prior) probabilities of the target values. Unlike 
CART [4], C4.5 [27], and EODG [18], the M-IFN construction algorithm has only the 
growing (top-down) phase. The top-down construction is terminated (pre-pruned) by 
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a statistical significance test (see below), and, consequently, there is no need in bot-
tom-up post-pruning of the network branches. The detailed process of building the 
network is explained below. 

M-IFN construction is an iterative rather than a recursive process. At every itera-
tion, the algorithm utilizes the entire set of training instances to choose an input (pre-
dicting) feature (from the set of unused "candidate input" features), which maximizes 
the decrease in the total conditional entropy of all class dimensions. The conditional 
entropy decrease, also called conditional mutual information [9] or information gain 
[25], is a very common feature selection criterion in single-objective and multi-
objective decision-tree algorithms (see [4] [6] [18] [27] [29], etc.).  

In information theory (see [9]), conditional entropy measures the degree of uncer-
tainty of a random variable Y given the values of other random variables X1, …, Xn 

and it is calculated as H(Y / X1, …, Xn) = -Σ p(x1,…, xn, y) log p(y / x1,…, xn,). If a 
given function is deterministic (noiseless) the conditional entropy of every output is 
zero.  

The conditional mutual information of the class dimension Yi and the input feature 
Xn given the features X1, …, Xn-1 is calculated by [9]:  

1 1

1 1 1 1 1

1 1
1

,..., , 1 1 1 1

( ; / ,..., ) ( / ,..., ) ( / ,..., )

( , / ,..., )
 ( ,..., , ) log

( / ,..., ) ( / ,..., )
n n i i

i n n i n i n

i n n
n i

x X x X y Y i n n n

MI Y X X X H Y X X H Y X X

p y x x x
p x x y

p y x x p x x x

− −

−

∈ ∈ ∈ − −

= − =

∑
 (1) 

At n-th iteration, the M-IFN algorithm chooses the input feature Xj*, which maxi-
mizes the sum of information gains over all class dimensions by finding 
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In a multi-objective info-fuzzy network having n-1 layers, each internal node in the 
last layer represents a conjunction of values of n-1 input features X1, …, Xn-1. Conse-
quently, the conditional mutual information of a class dimension Yi and an input fea-
ture Xn given the features X1, …, Xn-1 can be calculated as a sum of information gains 
of Yi and Xn over all terminal nodes z in the last layer Ln-1: 
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The algorithm evaluates nominal and continuous features in a different way. Thus, 
the conditional mutual information of each nominal input feature Xj and the class 
dimension Yi given a terminal node z is calculated by the following formula: 
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Where xj  and yi are distinct values of variables Xj and Yi respectively. 
In the M-IFN algorithm, we use the Likelihood-Ratio Test to evaluate the actual 

capability of an internal node to decrease the conditional entropy of an output by 
splitting it on the values of a particular input feature. The likelihood-ratio statistic of a 
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nominal input feature Xj and the class dimension Yi given a terminal node z is meas-
ured by the following expression (based on [28]): 

2
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where Nz (xj, yi) is the number of instances taking an input value xj and an output 
value yi at the node z and Ez(xj) is the total number of instances taking an input value 
xj at the same node. 

The Likelihood-Ratio Test is a general-purpose method for testing the null hy-
pothesis H0 that two random variables are statistically independent. Following our 
previous experience with single-objective IFN [23], the default significance level (p-
value) for rejecting the null hypothesis by the M-IFN algorithm is set to 0.1%. If the 
likelihood-ratio statistic is significant for at least one class dimension, the algorithm 
marks the node z as “split” on the values of an input feature Xj. However, the condi-
tional mutual information of Yi and Xj (see Eq. (3) above) is incremented by the result 
of Eq. (4) only if splitting z on  Xj proved to be statistically significant with respect to 
the class dimension Yi. In other words, the algorithm treats statistically insignificant 
values of information gain as zeros. As mentioned above, M-IFN is based on the pre-
pruning approach: when no input feature causes a statistically significant decrease in 
the conditional entropy of any class dimension, the top-down network construction is 
terminated.  

Unlike EODG [19], the M-IFN induction algorithm uses multi-way splits on con-
tinuous input features. The threshold splits are identical for all nodes of a given layer 
and they are determined by a procedure similar to the information-theoretic heuristic 
of Fayyad and Irani [11]: recursively find a binary partition of an input feature that 
minimizes the total conditional entropy of all class dimensions. However, the stop-
ping criterion we are using is different the minimum description length principle of 
[11]. Like in the case of nominal features (see above), we make use of the likelihood-
ratio test [28] with respect to the conditional entropy of every class dimension. The 
search for the best partition of a continuous attribute is dynamic: it is performed each 
time a candidate input attribute is considered for inclusion in the network. After dis-
cretization, each hidden node in the new layer of the network is associated with an 
interval of the selected feature. 

In Table 1 below, we show the main steps for constructing a multi-objective info-
fuzzy network from a set of candidate input features. 

As indicated above, the multi-objective classification task is to find an accurate 
model (or models) for predicting the values of m equally important class dimensions. 
The M-IFN induction procedure shown in Table 1 is a greedy algorithm that builds a 
single model aimed at minimizing the sum of conditional entropies of all dimensions. 
In [30], we show the M-IFN algorithm to have the following information-theoretic 
properties: 

• The average conditional entropy of m class dimensions in an n-input m-
dimensional model M is not greater than the average conditional entropy over m 
single-objective models Si (i=1, …, m) based on the same n input features. This 
inequality is strengthened if the multi-objective model M is trained on more fea-
tures than the single-objective models. Consequently, we may expect that the aver-
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age accuracy of a multi-objective model in predicting the values of m class dimen-
sions will not be worse, or even will be better, than the average accuracy of m sin-
gle-objective models that use the same set of input features. 

• If all class dimensions are either mutually independent or totally dependent on each 
other, the input feature selected by the algorithm will minimize the joint condi-
tional entropy of all class dimensions. The first case extends the scope of multitask 
learning [7], where “extra” tasks are assumed to be related to the main task. 

4   Case Studies 

Most datasets stored in the UCI Machine Learning Repository [3], UCI KDD Archive 
[16], and other collections of benchmark data have only one class dimension, which 
makes them inappropriate for the multi-objective classification task. After a careful 
search, we have located at [16] three datasets, which apparently have more than one 
class dimension. These datasets belong to three distinct domains: analysis of WWW 
user surveys (web mining), prediction of weather conditions (meteorology), and the 
impact of water quality on algae concentration (microbiology). For each data set, we 
run the single-objective IFN algorithm against each class dimension and compare the 

Table 1. Multi-objective Network Construction Algorithm 

Input: The set D of  training examples; the set R of candidate input features; the set 
O of class dimensions; the minimum significance level sign for splitting a 
network node (default: sign = 0.1%). 

Output: A dependency subset I of input features and an info-fuzzy network. Each 
input feature has a corresponding hidden layer in the network. 

Step 1 Initialize the info-fuzzy network (single root node representing all examples, 
no hidden layers, and a target layer for all values of the class dimensions). 
Initialize the set I of selected inputs as an empty set: I = ∅. 

Step 2 While the number of layers |I| < n (total number of candidate input features) 
do 

Step 2.1 For each candidate input Xj  /  Xj  ∈ R;  Xj ∉ I do 
If  Xj is continuous then 
find the best threshold splits of  Xj over all class dimensions O 
Calculate the total conditional mutual information between  Xj and the class 
dimensions O: _ ( ; / )

i

j i j
Y O

cond MI MI Y X I
∈

= ∑  

End Do 
Step 2.2 Find the candidate input  Xj* maximizing  cond_MIj 

Step 2.3 If cond_MIj* = 0, then 
End Do.  
Else  
Expand the network by a new hidden layer associated with the feature  Xj*, 
and add  Xj* to the set I of input features I = I ∩  Xj*. 

Step 2.4 End Do 

Step 3 Return the set of input features I and the network structure 
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average classification accuracy of the single-objective models to the accuracy of the 
M-IFN model. For benchmark purposes, we also present the results of additional 
classification / prediction algorithms that were applied in literature to these tasks. 
Finally, we compare the size of the multi-objective model, in terms of nodes and 
prediction rules, to the overall size of the single-objective models. 

The Internet Usage dataset contains selected results of the 8th WWW User Survey 
conducted by the Graphics and Visualization Unit (GVU) at Georgia Tech in 1997 
[13]. More than 10,000 respondents could check any number of answers out of a list 
of 19 not-purchasing reasons. This is a typical multi-objective classification task, 
where we have 19 binary-valued class dimensions. Table 2 shows the overall misclas-
sification rates of three algorithms: C4.5 [27], single-objective IFN, and M-IFN. All 
three algorithms were used with their default settings. One can see that the average 
performance of IFN appears to be slightly better than C4.5, while there is no overall 
difference between IFN and M-IFN. We may conclude that the Internet Usage task 
agrees with the M-IFN information-theoretic properties: the multi-objective model 
does not decrease the average predictive accuracy, which compares fairly with the 
accuracy of a state-of-the-art classification algorithm (C4.5). At the same time, M-
IFN has reduced the total number of nodes by 70% and the number of rules by nearly 
68%. 

Table 2. Internet Usage Data:Summary of Results 

 C4.5 IFN M-IFN Change vs. IFN 

Average Error Rate 0.1580 0.1524 0.1524 0.0% 

Internal Nodes  342 102 -70.2% 

Prediction Rules  268 86 -67.9% 
 
The El Nino Data Set includes 533 meteorological measurements taken between 

May 23 and June 5, 1998. To find potential relationships between the measured vari-
ables, we have identified three class dimensions. Since IFN and M-IFN algorithms 
can handle discrete class dimensions only, the values of every continuous output have 
been discretized to ten intervals of equal frequency. Multiple linear regression, which 
was used as a benchmark method, can directly handle the continuous dependent vari-
ables. Table 3 shows the Root Mean Square Error (RMSE) of multiple linear regres-
sion, single-objective IFN, and M-IFN on the three class dimensions of El Nino data-
set. Despite discretization, the single-objective IFN was superior to regression on all 
three class dimensions. M-IFN has further improved the average predictive perform-
ance of the single-objective IFN algorithm. Thus, the results of the El Nino task sup-
port M-IFN information-theoretic properties by showing an improvement in the aver-
age predictive accuracy of M-IFN vs. the single-objective models. 

Table 3. El Nino Data: Summary of Results 

 Regression IFN M-IFN Change vs. IFN 

RMSE 2.860 2.520 2.107 -16.4% 

Internal Nodes  82 41 -50.0% 

Prediction Rules  63 33 -47.6% 
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The data used in 1999 Computational Intelligence and Learning (COIL) competi-
tion comes from a microbiological study. The collected data included 340 water qual-
ity samples each containing 18 values. The seven class dimensions of each observa-
tion are the distribution of different kinds of algae. Since info-fuzzy networks can 
handle discrete class dimensions only, the continuous values of every output have 
been discretized to ten intervals of equal frequency. The results of a multi-objective 
artificial neural network (ANN) [8] were used as a benchmark. These results have 
been awarded the runner-up prize at the COIL competition. Table 4 shows the Root 
Mean Square Error (RMSE) of artificial neural network, single-objective IFN, and M-
IFN on the seven class dimensions (algae kinds) of COIL 1999 dataset. Apparently, 
the performance of info-fuzzy models was slightly worse than the performance of the 
neural network. However this gap may be explained by the power transformations 
applied to the original variables before training the ANN algorithm [8]. The results of 
IFN algorithms presented here are based on the raw, untransformed values of all fea-
tures. In any case, these results confirm again the information-theoretic properties of 
M-IFN by showing a slight decrease in the average error of M-IFN vs. the overall 
error of the seven single-objective models. We also observe a 54% decrease in the 
number of hidden nodes and a 50% decrease in the number of rules as a result of 
using a multi-objective info-fuzzy model, which on average provides us with more 
accurate predictions than the single-objective info-fuzzy models. 

Table 4. COIL 1999 Data: Summary of Results 

 Neural Network IFN M-IFN Change vs. IFN 

RMSE 9.069 9.841 9.657 -1.9% 

Internal Nodes  37 17 -54.1% 

Prediction Rules  24 12 -50.0% 

5   Conclusions 

In this paper, we have introduced a novel classification algorithm called M-IFN 
(Multi-objective Info-Fuzzy Network) for inducing an oblivious decision graph from 
a multi-objective data set. Using theoretical analysis and empirical evaluation, we 
have shown that multi-objective algorithms in general and the M-IFN algorithm in 
particular have a sound potential for producing compact and accurate classification 
models in a complex and multi-faceted learning environment. 

Adaptation of other classification algorithms, such as C4.5, for the multi-objective 
classification task has yet to be explored. In addition, it would be interesting to see 
applications of M-IFN and other multi-objective classification algorithms to real-
world learning tasks in health care, time series analysis, and other areas. Multi-
objective models can also contribute to design of black-box test cases for multi-output 
software systems [22]. The information-theoretic properties of M-IFN suggest that 
multi-objective classification can be enhanced by analyzing dependency relations 
between class dimensions. This is another important direction for future research.  
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