Abstract
Elliptic Curve Public Key Cryptosystems (ECPKC) are becoming increasingly popular for use in mobile appliances where bandwidth and chip area are strongly constrained. For the same level of security, ECPKC use much smaller key length than the commonly used RSA. The underlying operation of affine coordinates elliptic curve point multiplication requires modular multiplication, division/inversion and addition/substraction. To avoid the critical division/inversion operation, other coordinate systems may be chosen, but this implies more operations and a strong increase in memory requirements. So, in area and memory constrained devices, affine coordinates should be preferred, especially over GF(p).
This paper presents a powerful reconfigurable hardware implementation of the Takagi modular divider algorithm. Resulting 256-bit circuits achieved a ratio throughput/area improved by at least 900 % of the only known design in Xilinx Virtex-E technology. Comparison with typical modular multiplication performance is carried out to suggest the use of affine coordinates also for speed reason.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brent, R.P., Kung, H.T.: Systolic VLSI arrays for linear time GCD computation. In: VLSI 1983, pp. 145–154 (1983)
Chang-Shantz, S.: From Euclid’s GCD to Montgomery Multiplication to the Great Divide. Technical report, Sun Microsystems Laboratories TR-2001-95 (June 2001)
Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)
Daly, A., Marnane, W., Kerins, T., Popovici, E.: Fast Modular Division for Application in ECC on Reconfigurable Logic. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, Springer, Heidelberg (2003)
Daly, A., Marnane, W.: Efficient architectures for implementing montgomery modular multiplication and RSA modular exponentiation on reconfigurable logic. In: Proceedings of the 2002 ACM/SIGDA tenth international symposium on Fieldprogrammable gate arrays (2002)
Joye, M., Paillier, P.: GCD-free Algorithms for Computing Modular Inverses. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 243–253. Springer, Heidelberg (2003)
Kahaira, M.E., Takagi, N.: A VLSI Algorithm for Modular Mulitplication/Division. In: The 16th IEEE Symposium on Computer Arithmetic — ARITH 16, Spain, Santiago de Compostela, June 15-18 (2003)
Kaliski Jr., B.S.: The Montgomery Inverse and its Applications. IEEE Transactions on Computers 44(8), 1064–1065 (1995)
Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algorithms. Addison-Wesley, Reading (1981)
Savaş, E., Koç, Ç.K.: The Montgomery Modular Inverse - Revisited. IEEE Transactions on Computers 49(7), 763–766 (2000)
Takagi, N.: A VLSI Algorithm for Modular Division Based on the Binary GCD Algorithm. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences E81-A(5), 724–728 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Dormale, G.M., Bulens, P., Quisquater, JJ. (2004). Efficient Modular Division Implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds) Field Programmable Logic and Application. FPL 2004. Lecture Notes in Computer Science, vol 3203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30117-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-30117-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22989-6
Online ISBN: 978-3-540-30117-2
eBook Packages: Springer Book Archive