Skip to main content

Efficient Modular Division Implementation

ECC over GF(p) Affine Coordinates Application

  • Conference paper
Field Programmable Logic and Application (FPL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3203))

Included in the following conference series:

  • 1756 Accesses

Abstract

Elliptic Curve Public Key Cryptosystems (ECPKC) are becoming increasingly popular for use in mobile appliances where bandwidth and chip area are strongly constrained. For the same level of security, ECPKC use much smaller key length than the commonly used RSA. The underlying operation of affine coordinates elliptic curve point multiplication requires modular multiplication, division/inversion and addition/substraction. To avoid the critical division/inversion operation, other coordinate systems may be chosen, but this implies more operations and a strong increase in memory requirements. So, in area and memory constrained devices, affine coordinates should be preferred, especially over GF(p).

This paper presents a powerful reconfigurable hardware implementation of the Takagi modular divider algorithm. Resulting 256-bit circuits achieved a ratio throughput/area improved by at least 900 % of the only known design in Xilinx Virtex-E technology. Comparison with typical modular multiplication performance is carried out to suggest the use of affine coordinates also for speed reason.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brent, R.P., Kung, H.T.: Systolic VLSI arrays for linear time GCD computation. In: VLSI 1983, pp. 145–154 (1983)

    Google Scholar 

  2. Chang-Shantz, S.: From Euclid’s GCD to Montgomery Multiplication to the Great Divide. Technical report, Sun Microsystems Laboratories TR-2001-95 (June 2001)

    Google Scholar 

  3. Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation using Mixed Coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Daly, A., Marnane, W., Kerins, T., Popovici, E.: Fast Modular Division for Application in ECC on Reconfigurable Logic. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Daly, A., Marnane, W.: Efficient architectures for implementing montgomery modular multiplication and RSA modular exponentiation on reconfigurable logic. In: Proceedings of the 2002 ACM/SIGDA tenth international symposium on Fieldprogrammable gate arrays (2002)

    Google Scholar 

  6. Joye, M., Paillier, P.: GCD-free Algorithms for Computing Modular Inverses. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 243–253. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Kahaira, M.E., Takagi, N.: A VLSI Algorithm for Modular Mulitplication/Division. In: The 16th IEEE Symposium on Computer Arithmetic — ARITH 16, Spain, Santiago de Compostela, June 15-18 (2003)

    Google Scholar 

  8. Kaliski Jr., B.S.: The Montgomery Inverse and its Applications. IEEE Transactions on Computers 44(8), 1064–1065 (1995)

    Article  MATH  Google Scholar 

  9. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algorithms. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  10. Savaş, E., Koç, Ç.K.: The Montgomery Modular Inverse - Revisited. IEEE Transactions on Computers 49(7), 763–766 (2000)

    Article  Google Scholar 

  11. Takagi, N.: A VLSI Algorithm for Modular Division Based on the Binary GCD Algorithm. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences E81-A(5), 724–728 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Dormale, G.M., Bulens, P., Quisquater, JJ. (2004). Efficient Modular Division Implementation. In: Becker, J., Platzner, M., Vernalde, S. (eds) Field Programmable Logic and Application. FPL 2004. Lecture Notes in Computer Science, vol 3203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30117-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30117-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22989-6

  • Online ISBN: 978-3-540-30117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics