Skip to main content

Automatic Image Segmentation Using a Deformable Model Based on Charged Particles

  • Conference paper
Image Analysis and Recognition (ICIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3211))

Included in the following conference series:

Abstract

We present a method for automatic segmentation of grey-scale images, based on a recently introduced deformable model, the charged-particle model (CPM). The model is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are attracted towards the contours of the objects of interest by an electrostatic field, whose sources are computed based on the gradient-magnitude image. Unlike the case of active contours, extensive user interaction in the initialization phase is not mandatory, and segmentation can be performed automatically. To demonstrate the reliability of the model, we conducted experiments on a large database of microscopic images of diatom shells. Since the shells are highly textured, a post-processing step is necessary in order to extract only their outlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: CPM: A deformable model for shape recovery and segmentation based on charged particles. IEEE Trans. Pattern Anal. Machine Intell. (2004) (in press)

    Google Scholar 

  2. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)

    Article  Google Scholar 

  3. Jalba, A.C., Roerdink, J.B.T.M.: Automatic segmentation of diatom images. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 369–376. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge Univ. Press, Cambridge (1988)

    MATH  Google Scholar 

  5. Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing 60, 125–135 (1998)

    Article  Google Scholar 

  6. Wilkinson, M.H.F., Jalba, A.C., Urbach, E.R., Roerdink, J.B.T.M.: Identification by mathematical morphology. In: DuBuf, J.M.H., Bayer, M.M. (eds.) Automatic Diatom Identification. Series in Machine Perception and Artificial Intelligence, vol. 51, pp. 221–244. World Scientific Publishing Co., Singapore (2002)

    Chapter  Google Scholar 

  7. Pech-Pacheco, J.L., Cristobal, G.: Automatic slide scanning. In: du Buf, H., Bayer, M.M. (eds.) Automatic Diatom Identification, pp. 259–288. World Scientific Publishing, Singapore (2002)

    Chapter  Google Scholar 

  8. Fischer, S., Bunke, H., Shahbazkia, H.R.: Contour extraction. In: du Buf, H., Bayer, M. (eds.) Automatic Diatom Identification, pp. 93–107. World Scientific Publishing, Singapore (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M. (2004). Automatic Image Segmentation Using a Deformable Model Based on Charged Particles. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30125-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30125-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23223-0

  • Online ISBN: 978-3-540-30125-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics