Skip to main content

An Improved Clustering-Based Approach for DNA Microarray Image Segmentation

  • Conference paper
Image Analysis and Recognition (ICIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3212))

Included in the following conference series:

  • 918 Accesses

Abstract

DNA Microarrays are powerful techniques that are used to analyze the expression of DNA in organisms after performing experiments. One of the key issues in the experimental approaches that utilize microarrays is to extract quantitative information from the spots, which represent the genes in the experiments. In this process, separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this paper, we present an optimized clustering-based microarray image segmentation approach. As opposed to traditional clustering-based methods, we use more than one feature to represent the pixels. The experiments show that our algorithm performs microarray image segmentation more accurately than the previous clustering-based microarray image segmentation methods, and does not need a post-processing stage to eliminate the noisy pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axon Instruments, Inc. GenePix 4000A: User’s manual (1999)

    Google Scholar 

  2. Brazma, A., Vilo, J.: Gene expression data analysis. FEBS Letters 480, 17–24 (2000)

    Article  Google Scholar 

  3. Brown, P., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nat Genet. 21(1 Suppl.), 33–37 (1999)

    Article  Google Scholar 

  4. Buhler, J., Ideker, T., Haynor, D.: Dapple: Improved Techniques for Finding Spots on DNA Microarrays. Technical Report UWTR 2000-08-05, University of Washington (2000)

    Google Scholar 

  5. Callow, M.J., Dudoit, S., Gong, E.L., Speed, T.P., Rubin, E.M.: Microarray expression profiling identifies genes with altered expression in HDL deficient mice. Genome Research 10(12), 2022–2029 (2000)

    Article  Google Scholar 

  6. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld – Image segmentation using expectation maximization and its application to image querying. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(8), 1026–1038 (2002)

    Article  Google Scholar 

  7. Chen, Y., Dougherty, E., Bittner, M.: Ratio-based decisions and the quantitative analysis of cDNA microarray images. Journal of Biomedical Optics 2, 364–374 (1997)

    Article  Google Scholar 

  8. Eisen, M.: ScanAlyze User Manual (1999)

    Google Scholar 

  9. GSI Lumonics. QuantArray Analysis Software, Operator’s Manual (1999)

    Google Scholar 

  10. Qin, L.: New Machine-learning-based Techniques for DNA Microarray Image Segmentation. Master’s thesis, School of Computer Science, University of Windsor (2004)

    Google Scholar 

  11. Schena, M.: Microarray analysis. John Wiley & Sons, Chichester (2002)

    Google Scholar 

  12. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  13. Wu, H., Yan, H.: Microarray Image Processing Based on Clustering and Morphological Analysis. In: Proc. of First Asia Pacific Bioinformatics Conference, Adelaide, pp. 111–118. Australia (2003)

    Google Scholar 

  14. Yang,Y., Buckley, M., Dudoit, S., Speed, T.: Comparison of Methods for Image Analysis on cDNA Microarray Data. Journal of Computational and Graphical Statistics 11, 108–136 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rueda, L., Qin, L. (2004). An Improved Clustering-Based Approach for DNA Microarray Image Segmentation. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30126-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30126-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23240-7

  • Online ISBN: 978-3-540-30126-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics