Skip to main content

Intelligent Multimedia Information Retrieval for Identifying and Rating Adult Images

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3213))

Abstract

We applied an intelligent multimedia information retrieval technique to devise an algorithm identifying and rating adult images. Given a query, ten most similar images are retrieved from an adult image database and a non-adult image database in which we store existing images of each class. If majority of the retrieved are adult images, then the query is determined to be an adult image. Otherwise, it is determined to be a non-adult class. Our experiment shows 99% true positives with 23% false positives with a database containing 1,300 non-adult images, and 93.5% correct detections with 8.4% false positives when experimented with a database containing 12,000 non-adult images. 9,900 adult images are used for both experiments. We also present an adult image rating algorithm which produces results that can be used as a reference for rating images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jones, M.J., Rehg, J.M.: Statistical Color Models with Application to Skin Detection, Technical Report Series, Cambridge Research Laboratory, December (1998)

    Google Scholar 

  2. Fleck, M., Forsyth, D., Bregler, C.: Finding Naked People. In: European Conference on Computer Vision, vol. II, pp. 592–602 (1996)

    Google Scholar 

  3. Forsyth, D.A., Fleck, M.M.: Identifying nude pictures. In: IEEE Workshop on the Applications of Computer Vision, pp. 103–108 (1996)

    Google Scholar 

  4. Forsyth, D.A., Fleck, M.M.: Body Plans. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–683 (1997)

    Google Scholar 

  5. Wang, J.Z., Li, J., Wiederhold, G., Firschein, O.: System for screening objectionable images using daubechies’ wavelets and color histograms. In: Proceedings of the International Workshop on Interactive Distributed Multimedia Systems and Telecommunications Services, pp. 20–30 (1997)

    Google Scholar 

  6. Drimbarean, A.F., Corcoran, P.M., Cucic, M., Buzuloiu, V.: Image Processing Techniques to Detect and Filter Objectionable Images based on Skin Tone and Shape Recognition. In: IEEE International Conference on Consumer Electronics (2000)

    Google Scholar 

  7. Mark, T.: Intelligent Multimedia Information Retrieval. AAAI Press, Menlo Park (1997)

    Google Scholar 

  8. Beom, K.H., Kwon, P.D., Sun, W.C., Jun, P.S., Joon, Y.S.: Image Retrieval Using a Composition of MPEG-7 Visual Descriptors. In: CISST (2002)

    Google Scholar 

  9. ISO/IEC JTC1/SC29/WG11/W4062, FCD 15938-3 Multimedia Content Description Interface – Part 3 Visual, Singapore (March, 2001)

    Google Scholar 

  10. Park, D.K., Jeon, Y.S., Won, C.S., Park, S.J.: Efficient use of local edge histogram descriptor. In: Workshop on Standards, Interoperability and Practices, Marina del Rey, CA, November 4, 2000, pp. 52–54. ACM, New York (2000)

    Google Scholar 

  11. Jung, Y.S., Kwon, P.D., Jun, P.S., Sun, W.C.: Image Retrieval Using a Novel Relevance Feedback for Edge Histogram Descriptor of MPEG-7. In: ICCE 2001, L.A (June, 2001)

    Google Scholar 

  12. Huang, J., Kumar, S., Zhu, W.J., Zabih, R.: Image indexing using color correlogram. In: Proc. Of IEEE Conf. On Computer Vision and Pattern Recognition (1997)

    Google Scholar 

  13. Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on PAMI 18(8) (August, 1996)

    Google Scholar 

  14. Peng, W., Man, R.Y., Sun, W.C., Yanglim, C.: Texture Descriptors in MPEG-7. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, Springer, Heidelberg (2001)

    Google Scholar 

  15. Chonbuk University, Multidimensional Feature Data Indexing Technology, Report, Electronics and Telecommunications Research Institute (1999)

    Google Scholar 

  16. Ruim, Y., Huang, T.S., Mehrotra, S.: Content-based image retrieval with relevance feedback in MARS. Proc. IEEE int. Conf. on Image Proc. (1997)

    Google Scholar 

  17. ISO/IEC/JTCI/SC29/WG11: Core Experiment Results for Spatial Intensity Descrip-tor(CT4),” MPEG document M5374, Maui (December, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoo, SJ. (2004). Intelligent Multimedia Information Retrieval for Identifying and Rating Adult Images. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30132-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23318-3

  • Online ISBN: 978-3-540-30132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics