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Abstract. We present a new method for delineating the osseous in-
terface in ultrasound images. Automatic segmentation of the bone-soft
tissues interface is achieved by mimicking the reasoning of the expert in
charge of the manual segmentation. Information are modeled and fused
by the use of fuzzy logic and the accurate delineation is then performed
by using general a priori knowledge about osseous interface and ultra-
sound imaging physics. Results of the automatic segmentation are com-
pared with the manual segmentation of an expert.

1 Introduction

In computer-aided orthopaedic surgery (CAOS), the knowledge of the bone vol-
ume position and geometry in the operative room is essential. The usual way
to acquire it is to register pre-operative data with intra-operative data. For the
last years, the use of ultrasound imaging as intra-operative imaging has signifi-
cantly increased ([1,2,3,4]) because such imaging investigations are inexpensive
and riskless ; and using 6D localized ultrasound probe makes it possible to re-
construct the 3D shape of a structure after its delineation. The extraction of
structures from ultrasound data appears to be a delicate key point in CAOS.
Several automatic or semi-automatic methods have been proposed to achieve the
delineation of features in ultrasound images but these methods apply to specific
parts of the human body ([2,3]) because of the poor quality of the ultrasound
images (low contrast, low signal-to-noise ratio and speckle noise). We propose
a fully automated method in order to achieve the delineation of the bone-soft
tissues interface in ultrasound images based on data fusion : data available in
images are modeled and fused by the use of fuzzy logic. We then mimic the
expert’s reasoning to accurately delineate the osseous interface.
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2 Material and Method

2.1 Material

Ultrasound imaging is achieved using a linear US probe, 25 mm large, working
at a frequency of 7.5 MHz. The probe is localized in 3D space by an optical
localizer. The US probe is calibrated according to the technique described in [5]
(the pixel size is about 0.1mm/pixel). The position of an image pixel is known
in 3D space with a precision in the range of the optical localizer (i.e. 1mm).

2.2 Method

In this section, we introduce the expert’s reasoning and the way we mimic it in
order to achieve an accurate segmentation of the osseous interface.

Expert’s reasoning. The expert’s reasoning is based on one hand on the
physics of the ultrasound imaging and on the other hand on his knowledge of
anatomy. Five properties can be pointed out :

1 - bones appear to be hyper-echoic
the great difference of acoustical impedance between bones and
surrounding soft-tissues generates an important echo.

2 - bones are said to ’stop’ ultrasound waves
this is due to the high absorption rate of bones.

3 - the reflection is almost completely specular
only interfaces almost perpendicular to the direction of the ultra-
sound beam will reflect so features of interest appear to be com-
posed of horizontal (or near horizontal) parts.

4 - non-broken bone surface do not present major discontinuities
the found osseous interface should be as smooth as possible.

5 - among an osseous interface, the contrast appears to be
homogeneous

We propose a method that models these information and mimics the reasoning
of the expert. The method is divided into 3 steps :

• the image processing step
which aims at modeling the information available in the images and
then concentrate them into one image representing the membership
of the pixel to a given property. This stage models and fuses points
1,2 and 3 cited above.

• the ’continuity-ness’ cost function computation step
which aims at finding continuous osseous interfaces from the fuzzy
image. We model here the point 4.

• the contrast computation and decision making
which purpose is to select the optimal osseous interface from the
candidates at the previous step from the fifth property.
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Fig. 1. Computation of FII from the original ultrasound image (pelvic bone)

Image Processing Step

Fuzzy Intensity Image: this image attempts to model the first property, i.e. in
ultrasound imaging, bones appear as hyper-echoic and therefore bright pixels
constitute an indication of the location of the osseous interface. In a previous
development [6], we pointed out that binarizing the initial ultrasound image
using the Otsu’s threshold (TOtsu) gives a good approximation of the echogenic
area and so, of the position of the osseous interface.
We make use of this information to build the fuzzification function µ

Int
: the

criterion (we call VOtsu : Fig.1-b, solid curve), needed to compute TOtsu, is used
as follows ; first, VOtsu is normalized and cumulated (Fig.1-b, dotted curve) and
it is then shifted in order to force the membership function value :

µ
Int

(T
Otsu

) = 0.5 (1)

The fuzzification function (Fig.1-b, dashed curve) is finally applied over the gray-
level image in order to achieve the construction of the fuzzy intensity image
FII(p) which gives for a pixel p of the intensity image its membership degree to
the echogenic area.
Fig.1-a shows an ultrasound image1 of the sacrum part, the intensity fuzzification
function and the Intensity Fuzzy Image (Fig.1-c).

Fuzzy Gradient Image: the gradient information constitutes another important
part in the determination of the osseous interface and so the fuzzy gradient image
FGI(p) is of great interest. Indeed, the transition from the bone to the acoustic
shadow area suggests to search for highly contrasted pixels (properties 1 and 2)
and because ultrasound imaging should only ’detect’ structure changes which
are perpendicular to the ultrasound beam (point 3: Fig. 2-a), we make use a 5x5
’horizontal-direction’ MDIF edge detector, which is a first-order derivative filter
obtained by the convolution of the 4-connexity 3×3 mean lowpass filter with the
Prewitt’s derivative kernels.
1 All the images have been cropped to half their length because the inferior part does

not present any interest
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(a) gradient image of

image Fig.1-a

(b) fuzzy gradient image (c) data fusion image

Fig. 2. Gradient image, FGI and Fusion Image of the original ultrasound image

The resulting image is then thresholded in order to remove the transition from
dark-to-bright. Finally, we use the S-shape function to perform the fuzzification
of the gradient image and obtain the Fuzzy Image Gradient FGI(p) (Fig. 2-b).
The parameters of the S-shape function are computed such that S(x) is the
closest s-shape function to the normalized cumulative histogram.

Data Fusion: a pixel of the US image may belong to the osseous interface if
both its gray-level and gradient are ’high’. This combination is achieved by the
use of the ’conjunctive-type’ combination operator min . The membership of a
pixel to the osseous interface is then given by :

FI(p) = min(FII(p), FGI(p)) (2)

FI(p) denotes the global degree of membership of the pixel p to the echogenic
area and to an highly contrasted image area (Fig.2-c).

Determination of the osseous interface. According to the expert’s rea-
soning, the optimal threshold described a continuous interface where the local
contrast is maximum and homogeneous. For each membership degree 0 < µ < 1
(µ space is discretized with a step δµ = 0.005), the defuzzification of FI(p) is
performed and the ’continuity-ness’ of the profile is evaluated. We then choose
the membership degree which maximizes the local contrast and its homogeneity,
and also ensures a local maximum continuity of the profile.

Defuzzification at a given membership degree µ: the defuzzification process
aims at extracting from the fuzzy image FI(p) the osseous interface related to a
membership degree µ

ref
. To achieve this task, we make use of a priori knowledge

about the physics of ultrasound imaging. As mentioned earlier, bones ’stop’ the
US-waves and so, for a column of the image, the pixel of the osseous interface
related to a membership value µ

ref
is the last (from the top) pixel which has

a membership equal to µ
ref

. At the end of this defuzzification process, at the
most one pixel per column is highlighted. The ’curve’ described by these pixels
is called profile in the rest of the paper.
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Fig. 3. Computation of FII from the original ultrasound image

Evaluation of the ’continuity-ness’ of the profile: because, actual osseous inter-
faces do not present discontinuities, the osseous interface we detect should be
as smooth as possible. We use this property to determine the optimal defuzzifi-
cation threshold by computing a function that reflects the ’continuity-ness’ of a
computed osseous interface.
The measure of the ’continuity-ness’ of a profile is achieved by applying the
wavelet transform to it : the wavelet transform decomposes the profile with a
multiresolution scale factor of two providing one low-resolution approximation
(A1) and one wavelet detail (D1). We then apply the wavelet transform to A1 and
get a second order low-resolution approximation (A2) and wavelet detail (D2).
The Detail signals are then used to quantify the discontinuities of the original
profile. The ’amount’ of discontinuities in the profile is computed as follows :

ε(µ) = E(D1) + E(D2) + Pen (3)

where E(s) is the energy of a signal s(t).
Experimentally, we choose the Daubechies-4 wavelet basis (several other bases
have been tested and no dependence was pointed out at the exception of the Haar
Basis). Pen is a penalization term related to the length of the profile which is
used to reject small osseous interfaces detected when µref is unsuitable (i.e. too
high).
Finally, ε(µ) is normalized (giving ε’(µ)) and we compute the ’continuity-ness’
of the profile as :

C(µ) = 1 − ε′(µ) (4)

As one can see (Fig.3-a), the ’continuity-ness’ function C(µ) presents several
local maxima. Each of them locates a membership degree µ where the associated
profile is more continuous than the profiles of its neighbors and so each of them
may be the optimal defuzzification threshold. We detect them by computing the
watershed transform of C(µ). For each local maxima, the image is defuzzed to
the corresponding membership degree µ and the local contrast is computed.
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Local contrast computation: for each pixel p belonging to a profile, the local
contrast LC(p) associated to the pixel p is computed by :

LC(p) =
Up − Down

Up + Down
(5)

where Up (resp. Down) is the mean value of the above (resp. underneath) region-
of -interest2. The global contrast along the profile Contrast(µ) is then computed
by :

Contrast(µ) =
∑

p

LC(p) (6)

We also evaluate the homogeneity of the local contrasts along a profile by com-
puting the standard deviation of the values along it. This gives us a function
StdDev(µ).
Optimal defuzzification threshold determination: Finally, the optimal member-
ship degree is the one that maximized Cost(µ) :

µOptimal = arg max Cost(µ)) (7)

where

Cost(µ) = Contrast(µ) +
1

StdDev(µ)
(8)

Fig.3-b shows the objective function computed by (8) and the resulting segmen-
tation is shown in Fig.3-c.

3 Results

The proposed method has been tested on ultrasound images of sacrum coming
from cadaver datasets or patient datasets : about 300 images have been pro-
cessed. For each image, the manual segmentation of the expert is available and
constitutes our bronze-standard.
For each image within a dataset, we compute the error between the manual seg-
mentation and the segmentation computed by our method. We then compute
the mean error for each image (Table 1-column 1) and the Hausdorff distance
and mean absolute distance (average of all the maximum errors within a subset)
(Table 1-column 2). In order to evaluate the ability of the proposed method to
delineate the osseous interface in strongly corrupted images, we also compute
the Signal-to-Mean Squared Error ratio (Table 1-column 3)(see [7] for more in-
formation about the S/MSE).

2 A roi is an area of 10 pixels long-by-1 pixel large
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Table 1. Segmentation differences

pixel size is 0.112mm x 0.109mm

As one can see (table 1), as compared to the manual delineation of the expert:
• the mean error of segmentation is always less than 10 pixels (i.e. 1mm)
even on highly corrupted images. However, it is clear that the accuracy
of the delineation is correlated within the amount of noise and therefore,
we think that taking into account the noise (measured by the S/sme ratio
by example) during the fusion and/or delineation process may be a way
to improve the delineation.
• the maximum errors still remain important but, according to us, it is
not the error we should focus on : we point out that these errors occur
at more or less one pixel on complex shapes (such as medial sacral crest
or sacral hiatus) giving thus an important maximum error comparatively
the manual delineation but the overall error on the global shape still
remains negligible and has very limited impact on the registration step
which follows.
• the proposed method is also sufficiently fast to be used during the
intra-operative stage of a CAOS : the time needed to delineate one image
is less than 4 s on a Pentium III -800 MHz PC. The processing of large
datasets such as Patient 3 takes about 4 minutes whereas it would take
more than 30 minutes in the case of a manual delineation (according to
[1]).

This method have also been used to delineate the osseous interface in femur
and vertebrae ultrasound images and the osseous interface was well delineated
in particular the spinous process in vertebrae images.

4 Discussion

Recently, lots of methods dedicated to the indirect delineation of the bone sur-
face in ultrasound images have been proposed in the literature ([2,3]) but these
methods have not been tested on real patients’ datasets yet. Moveover, the ul-
trasound imaging is constrained by the use of a mechanical system ([2]) ; and
a good initial estimation of the rigid registration matrix between the CT and
US datasets is often required to achieve the bone surface segmentation in the
ultrasound images ([3,4]).
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The method described in this paper does not require neither a dedicated ul-
trasound images acquisition system nor an estimation of the rigid registration
matrix between the CT and US datasets to perform the delineation of the os-
seous interface in ultrasound images. Moreover, it has been extensively tested on
images acquired on cadavers (about 120 images) and on real patients (about 170
images). We point out that although the method is sensible to noise, the mean
errors are still acceptable : we measure a maximum mean error of 8.8 pixels (i.e.
0.8 mm) with a S/mse ratio of 5.206 dB which corresponds to a highly corrupted
image (according to [7]).
We do not notice any dependence of the results to the visualization parameters
tuning at the exception that the osseous interface should not get bogged down
in noise. We think that this condition is acceptable since the physician has to
validate the images during the acquisition stage (and so, this validation can only
be done if he is able to localize the osseous interface).
We think that an important point has also to be made clear : the validation,
based on the comparison to a single expert segmentation, may appear limited.
However, segmenting bones on ultrasound images is very unusual for physicians
and it is difficult to find several expert users. Moreover, gold-standard does not
exist and tests on phantoms or isolated bones would not allow to draw conclu-
sions applicable to real data. Thus, we consider that this evaluation is a first
step.

5 Conclusion

In this paper, we presented a method for automatic delineation of the osseous
interface in ultrasound image. The method is based on the fusion of the pixels
intensity and gradient properties in a first step and then on the fusion of infor-
mation extracted from the physics of ultrasound imaging and a priori knowledge.
The method has been used to delineate osseous interface in ultrasound images
of the sacrum which may present several shapes ; we also use it to delineate
the osseous interface in vertebrae images and good results were obtained in all
cases. As it is independent of the shape to be recovered we think that the de-
scribed method is a first step toward robust delineation of the osseous interface
in ultrasound images.
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