Abstract
We propose the use of a particle filter as a solution to the rigid shape-based registration problem commonly found in computer-assisted surgery. This approach is especially useful where there are only a few registration points corresponding to only a fraction of the surface model. Tests performed on patient models, with registration points collected during surgery, suggest that particle filters perform well and also provide novel quality measures to the surgeon.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. 14(2), 239–256 (1992)
Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: IEEE Workshop on Math. Methods in Biomed. Im. Anal., pp. 190–197 (2000)
Croitoru, H., Ellis, R.E., Small, C.F., Prihar, R., Pichora, D.R.: Fixation-based surgery: A new technique for distal radius osteotomy. J. Comp. Aided Surg. 6, 160–169 (2001)
Dellaert, F.: Monte Carlo EM for Data-Association and its Applications in Computer Vision. PhD thesis, Carnegie Mellon University (2001)
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comp. 10, 197–208 (2000)
Granger, S., Pennec, X.: Multi-scale EM-ICP: A fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)
Grimson, W.E.L., Ettinger, G.J., White, S.J., Lozano-Pérez, T., Wells III, W.M., Kikinis, R.: An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Trans. Med. Imaging 15(2), 129–140 (1996)
Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Con. 45(5), 910–927 (2000)
Iyun, O., Borschneck, D.P., Ellis, R.E.: Computer-assisted correction of bone deformities. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 232–240. Springer, Heidelberg (2002)
Julier, S., Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems. In: Proc. of AeroSense, Orlando, Florida (1997)
Okuma, K., Taleghani, A., de Freitas, N., Little, J., Lowe, D.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)
Rui, Y., Chen, Y.: Better proposal distributions: Object tracking using unscented particle filter. In: Proc. of IEEE Conf. on Comp. Vis. and Patt. Recog., pp. 786–793 (2001)
van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The unscented particle filter. Technical Report CUED/F-INFENG/TR 380, Cambridge Univ. Dept. of Eng. (2000)
van der Merwe, R., Wan, E.: Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models. In: Proc. of the Int. Conf. on Acous. Speech, and Sig. Proc. (2003)
Vermaak, J., Doucet, A., Pérez, P.: Maintaining multi-modality through mixture tracking. In: Int. Conf. on Computer Vision, Nice, France (2003)
Wan, E., van der Merwe, R.: The unscented kalman filter for nonlinear estimation. In: Proc. of Sym. on Adapt. Sys. for Sig. Proc. Comm. and Control, Lake Louise, Canada (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ma, B., Ellis, R.E. (2004). Surface-Based Registration with a Particle Filter. In: Barillot, C., Haynor, D.R., Hellier, P. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, vol 3216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30135-6_69
Download citation
DOI: https://doi.org/10.1007/978-3-540-30135-6_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22976-6
Online ISBN: 978-3-540-30135-6
eBook Packages: Springer Book Archive