Abstract
A method is presented to non-rigidly register lateral ventricles to enable the automated analysis of peri-ventricular white matter lesions. A binary average image of the lateral ventricle system is used as a reference image for registration. To prevent false deformations of the lesions we non-rigidly register CSF segmentations to the average lateral ventricle image. The subvoxel accuracy achieved, allows accurate mapping of the peri-ventricular white matter lesions to the reference space of the average lateral ventricles. Application to patient data shows the feasibility of the presented approach.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
de Leeuw, F.E., de Groot, J.C., Achten, E., Oudkerk, M., Ramos, L.M., Heijboer, R., Hofman, A., Jolles, J., van Gijn, J., Breteler, M.M.: Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 70, 9–14 (2001)
de Leeuw, F.E., de Groot, J.C., Oudkerk, M., Witteman, J.C., Hofman, A., van Gijn, J., Breteler, M.M.: Hypertension and cerebral white matter lesions in a prospective cohort study. Brain 125, 765–772 (2002)
Longstreth Jr., W.T., Manolio, T.A., Arnold, A., Burke, G.L., Bryan, N., Jungreis, C.A., Enright, P.L., O’Leary, D., Fried, L.: Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study, Stroke 27, 1274–1282 (1996)
Taylor, W.D., MacFall, J.R., Provenzale, J.M., Payne, M.E., McQuoid, D.R., Steffens, D.C., Krishnan, K.R.: Serial MR imaging of volumes of hyperintense white matter lesions in elderly patients: correlation with vascular risk factors. AJR Am. J. Roentgenol. 181, 571–576 (2003)
Likar, B., Viergever, M.A., Pernus, F.: Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans. Med. Imaging 20, 1398–1410 (2001)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)
Bradley, P.S., Fayyad, U.M.: Refining initial points for K-means clustering. International Conference on Machine Learning, 91–99 (1998)
Herman, G.T., Zheng, J.S., Bucholtz, C.A.: Shape-based interpolation. IEEE Computer Graphics and Applications 12, 69–79 (1992)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999)
Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32, 71–86 (1999)
Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C., van der Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. Neuroimage (2004) (in press)
Holmes, A.P., Blair, R.C., Watson, J.D.G., Ford, I.: Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16, 7–22 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jongen, C., van der Grond, J., Pluim, J.P.W. (2004). Ventricle Registration for Inter-subject White Matter Lesion Analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, vol 3216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30135-6_87
Download citation
DOI: https://doi.org/10.1007/978-3-540-30135-6_87
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22976-6
Online ISBN: 978-3-540-30135-6
eBook Packages: Springer Book Archive