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Abstract. We present methods for extracting an average representa-
tion of respiratory dynamics from free-breathing lung MR images. Due
to individual variations in respiration and the difficulties of real-time
pulmonary imaging, time of image acquisition bears little physiologic
meaning. Thus, we reparameterize each individual’s expiratory image
sequence with respect to normalized lung capacity (area, as a substi-
tute for volume), where 1 represents maximal capacity and 0 minimal
capacity, as measured by semi-automated image segmentation. This pro-
cess, combined with intra-subject pairwise non-rigid registration, is used
to interpolate intermediate images in the normalized capacity interval
[0, 1]. Images from separate individuals with the same normalized ca-
pacity are taken to be at corresponding points during expiration. We
then construct an average representation of pulmonary dynamics from
capacity-matched image sequences. This methodology is illustrated using
two coronal 2-D datasets from healthy individuals.

1 Introduction

The lung is a highly elastic organ composed of fibers connecting the large airways,
intricate vasculature and pulmonary interstitium. A healthy lung is normally
highly compliant, deforming easily during respiration, [1]. Pathological processes
that affect the lung typically alter the normal mechanical properties of lung
tissue, and manifest as observable changes in lung morphology and function. The
ability to quantify differences in pulmonary deformation would be useful in early
detection of disease, evaluation of treatment efficacy and improved assessment
of disease staging and prognosis. Magnetic resonance (MR) imaging and other
structural imaging modalities can be used to capture in vivo deformation of the
lung between sequential images by harnessing the power of non-rigid registration
algorithms, [2,3].

In prior studies, we have employed a variational registration algorithm with
a linear elastic prior to quantify lung motion captured in serial image sequences,
by registering sequential pairs of images I and J and examining the resulting
displacement fields, [4]. We impose the linear elastic behavior of the image via a
finite element mesh constructed over the domain of I. We have also applied this
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Fig. 1. (a) Evolution of pulmonary cross-sectional areas over imaging time in two
healthy individuals. The decrement in area between each image pair is non-uniform
throughout expiration. The large circles indicate the lung areas within the images
interpolated via reparameterization. (b) At a fixed point in time, the extent of res-
piratory deformation will vary between individuals; this motivates our efforts toward
establishing temporal correspondence.

technique to quantify the differences in pulmonary deformation between normal
mice and transgenic mice with sickle cell disease, [5]. In related work, the orig-
inal registration algorithm has been modified to yield the diffeomorphic fluid
deformation framework which is assumed in this paper, [6]. The diffeomorphic
component requires that the solution to the registration be continuous, differen-
tiable and invertible. When combined with the fluid framework and approached
from the Eulerian perspective, the total deformation between fixed image I and
moving image J is considered to be a composition of incremental transforma-
tions, each of which is diffeomorphic.

One of the challenges in comparing the respiratory dynamics of two indi-
viduals is in achieving temporal correspondence between physiologically similar
points of the respiratory cycle. Dynamic modeling as well as inter-subject match-
ing are ongoing areas of research in cardiac imaging as well. Solutions have been
proposed that include extending the B-spline framework used to perform pair-
wise registrations to simultaneous spatio-temporal image matching, as well as
applying translation and scaling in the temporal domain as a precursor to non-
rigid registration in the spatial domain, [7,8].

The images used in these experiments are acquired at a constant time in-
terval while the volunteers breathe slowly and deeply, consciously controlling
their respiration. Hence, even though the images are evenly spaced in time, the
deformation of the lung is non-uniformly sampled during image acquisition (fig-
ure 1a). Consequently, the motion that occurs between one pair of images is not
equivalent to the motion within the subsequent image pair. In order to be able
to make accurate comparisons between individuals, it is necessary to correlate
points during their respiratory cycles. Furthermore, we expect that at any fixed
time during respiration, cross-sectional areas will differ between healthy subjects
due to natural individual variations in respiratory deformation (figure 1b).
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Fig. 2. Capacity-based reparameterization of the expiratory image sequences is per-
formed as shown above. The desired intermediate image is acquired via linear search
along the pre-computed deformation field between the two adjacent images.

In this work, we apply a novel capacity-based reparameterization to resam-
ple dynamic sequences of 2-D free-breathing lung MR images with the goal of
achieving correspondence between individuals’ respiratory cycles. Normalizing
the lung capacity with respect to its maximum value at end-inspiration yields
a “physiologic” time axis whose value is 1 at end-inspiration and zero at end-
expiration. These two time points are selected manually by an expert user. The
image sequence is then registered in time to find deformation fields (generally
small) between an individual’s lung state at time ti and time ti+1, with areas Ai

and Ai+1, respectively. An interpolation method using these deformation fields
and segmentations of both lungs is applied to estimate images which represent
the lungs at desired area, A, where Ai ≤ A ≤ Ai+1. A dynamic average lung
representation of the expiratory segment of breathing is then constructed by
assuming inter-subject correspondence of images with identical relative areas,
{A0, · · · , Ai, · · · , A1}, and computing the shape (or deformation) and intensity
average between each area-coincident set of images.

2 Methods

We apply our method to two sequences of free-breathing coronal images
collected from individuals with no known pulmonary disease (FIESTA, GE
Signa, TR=3.22ms, TE=1.45ms, slice thickness=15mm, FOV=35cm, ma-
trix=256x256). Volunteers were instructed to breathe as slowly and deeply as
possible while images were continuously acquired every 1.4 seconds. In each
dataset, approximately twenty-two images were acquired over one full breath (ex-
piration followed by inspiration). Lung deformation was not smoothly sampled,
since each individual was free to breathe at a comfortable pace. End-inspiration
and end-expiration were determined by finding the maximal and minimal cross-
sectional areas, respectively, of both lungs during the respiratory cycle. In these
preliminary experiments, we focus on the expiratory phase of respiration alone.

In order to estimate the cross-sectional area of the lungs in each image,
we stack the images into a volume and segment the lungs and vasculature using
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Fig. 3. Construction of dynamic atlases of lung deformation from sequences of images
would proceed as shown above. Please refer to the text for further details.

ITK-SNAP, an open-source implementation of semi-automated level set segmen-
tation, [9]. The segmentations are manually refined, smoothed with a median
filter of radius 1, and post-processed using morphological closing (dilation fol-
lowed by erosion) with a 6x6x6 structuring element. The resulting segmentations
include the pulmonary parenchyma and most of the branches of the pulmonary
vascular tree; however, some of the largest blood vessels remain as holes within
the segmentation.

We first perform pairwise registration between consecutive images in each
sequence of N images using the fluid registration discussed previously. The re-
sulting set of deformation fields, {U1, · · · ,UN−1} reveals the change in capacity
between each image pair through the jacobian of the field, J =

∫ |DUi|dx, with
Ω the domain of the lung segmentation. By construction, Ai+1 =

∫
Ω

|DUi|dx.
The non-uniform sampling of the imaging sequences (caused, in part, by each
individual’s voluntary modulation of respiration and illustrated in figure 1a) is
also measured.

In order to appropriately compare the two sequences, we normalize the trend
of capacities (i.e, cross-sectional areas) observed during expiration such that
capacity has value 1 at end-inspiration and 0 at end-expiration. Within each
sequence, intermediate images are reconstructed by solving the following mini-
mization between consecutive images,

E(γ) =
1
2
(
∫

Ω

|D(γUi)|dx − A)2, (1)

with Ai ≤ A ≤ Ai+1 and γ a scalar in [0, 1]. Linear scaling is used here be-
cause the deformation between images i and i + 1 is small, justifying a local
linear approximation. We use normalized capacity values A = {0.25, 0.5, 0.75}



1004 T.A. Sundaram, B.B. Avants, and J.C. Gee

Fig. 4. The shape and intensity averaging evaluation process is illustrated above.
Images taken at t1 = 1 and t2 = 2 from a single-subject image sequence are shape
and intensity averaged. A third image, taken at time t, with t1 < t < t2 and with
approximately equal deformation energy to each of its neighbors, is used as an estimate
of ground truth to evaluate the quality of the mean image. The symmetric averaging
method in [10] is used to estimate the mean shapes (shown in the bottom row on the
left side of the equation), which are then intensity averaged to yield the image on the
right side of the equation. The intensity difference between this average image and the
image at time t was less than the difference with the images at t1 and t2. Similar results
have been found with a set of slices from brain images.

to generate new sequences of five images each that represent the configuration
of the pulmonary anatomy at particular values of the cross-sectional area. Note
that each of the values between 1 and 0 represents a physiologic time during the
expiratory phase, at which the lungs of all individuals have achieved the same
reduction in capacity with respect to end-inspiration. Hence, we are now able to
directly compare and match the images at these physiologic time points.

Using these capacity-coincident images, we are able to build a dynamic aver-
age lung model. First, the shape average of each set of capacity-coincident images
is computed. This inter-subject average is determined by performing a simulta-
neous, symmetric registration of the two images, and traversing the gradient of
the similarity at a constant step length, [10]. This produces a new sequence of
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five images representing the average respiratory deformation of the two individ-
uals. The intensities of these symmetrically registered images are then averaged
to give a least squares best representation of the database of anatomy at each
of the five normalized capacity points {Ai}.

The methodology for representing the average lung deformation relies on the
composition of deformation fields, as shown in figure 3. The goal is to repre-
sent all deformation patterns with respect to the set of average configurations,
{Ai}, constructed from deformation- and intensity-averaging of the datasets for
each capacity Ai. We only perform intra-subject registrations in time and inter-
subject registrations at a given fixed normalized capacity. No registrations create
a diagonal connection such as the one in figure 3. To illustrate, we denote the
existing intra-subject transformation between a subject at end-inspiration, I1

0 ,
and its subsequent anatomy with capacity A1, as U1

0. The same transforma-
tion from capacities A0 to A1 in a second subject, I2

0 , is U2
0. Then, the average

end-inspiratory anatomy estimated from these two subjects would be A0, where
transformations U1

0 and U2
0 map each subject, respectively, to A0. Each Uk

0 is
represented in the domain of A0 by composing Uk

0
−1 onto Uk

0 . In this domain,
these fields (if small enough) may be averaged.

3 Results

The pairwise registrations between each sequence computed at the beginning of
this paper quantify the non-uniform sampling of respiratory deformation that
motivates this work. However, in each sequence, there is an image which is
equidistant from its adjacent neighbors, where the distance is defined by defor-
mation, [10]. We choose to reconstruct these images as validation of the shape
averaging method (figure 4).

Figure 5 illustrates the results of the capacity reparameterization of both se-
quences. The newly interpolated images at equally spaced area fractions between
end-inspiration and end-expiration are shown. Recall that these images do not
represent physiologic conditions in each volunteer at the same point of elapsed
time after end-inspiration, since each individual breathes at his or her own pace.
Instead, the interpolated images represent a physiologic correspondence between
the two individuals. The amount of time and respiratory deformation required
to arrive at this anatomic configuration in each individual is different; how-
ever, they are proportionately at the same point in their respective breathing
cycles. Achieving this correspondence enables us to make further quantitative
comparisons between the two individuals with respect to deformation patterns
and regional pulmonary strains. Furthermore, we can now construct the average
lung deformation sequence using these correlated sequences. Despite the large
intensity variations in the data associated with vascular and fluid-containing
structures entering the imaging plane, we are still able to compute reasonable
averages between the images, and produce a smooth representation of average
lung deformation during expiration.
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Fig. 5. Interpolated images are produced at specific physiologic times via area repa-
rameterization in each individual, and the average lung deformation sequence can be
computed via shape averaging of the area-coincident images.

4 Discussion and Future Work

We presented a method for reparameterizing images taken in time according to
some physiologic function, in this case, lung capacity. In these experiments, we
use cross-sectional area; in the three-dimensional case, we would naturally use
lung volume. Given this reparameterization, we are able to bring images into
correspondence with respect to this known physiologic reference. We can now
confidently create an average model which will serve as the basis for further
studies of normal and abnormal variations in lung deformation. Furthermore,
we can use these techniques to perform inter-subject comparisons of deforma-
tion patterns and regional strains within the lung, by composing the incremental
deformation fields required to arrive at the coincident anatomic configurations,
and then making quantitative assessments of these total deformations. This tech-
nique is equally applicable if the data is acquired using breath-holding instead
of free-breathing. The flexibility of the method is especially useful in volumet-
ric MR studies, where the time necessary to image the whole chest exceeds the
normal duration of a single breath (4-5 seconds).
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We chose to focus on the expiratory phase of breathing in this paper to bet-
ter illustrate the concepts presented. However, our approach can be extended to
include the entire respiratory cycle, as well as to include more than two individ-
uals in the mean deformation model. Furthermore, the quantitative information
produced by our approach stimulates a number of interesting questions about
respiratory deformation. In the future, we would like to explore the symmetry of
the inspiratory and expiratory phases of respiration, and the disruption of any
inherent symmetry as a result of disease. Additionally, we intend to investigate
other physiological bases for reparameterization (e.g. deformation), extend this
analysis to more than two individuals, and further explore the creation of 3-D
dynamic atlases of the lung.
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