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Abstract. Fourier Volume Rendering (FVR) has received consider-
able attention in volume visualization during the last decade due its
O(N2logN) rendering time complexity, where O(N3) is the volume size.
Nevertheless, FVR currently suffers from some quality limiting its use-
fulness in particular medical applications. The main reason for this is
the lack of weighting sample points in dependence of the samples along
the integration path. In this work we propose a solution for a special
class of problems, namely the extraction and emphasis of contours in
volumetric datasets. The accuracy of the illumination of the extracted
contours can be derived in an exact manner. Main applications of our
method include contour extraction and enhancement of features, noise
removal and revealing of important spatial relationships between inte-
rior and exterior structures, making it an attractive tool for improved
X-ray-like investigations of the given dataset.

1 Introduction

Volume rendering is a technique for visualizing sampled scalar or vectorial vol-
umes of three dimensions by propagation of light in a participating medium.
Two main approaches have established in this area: (i) object space and (ii)
Fourier space algorithms. The first class of algorithms was originally introduced
by Kajiya [6] in 1984. Since then, this model was steadily improved in both
speed and quality using global illumination, graphics hardware, pre-integration
strategies and Wavelet compression (see e.g. [12], [4] and [7]). Since working in
object space, these algorithms allow for modelling light transport in a variety
of ways, involving transfer functions and physical parameters like albedo, inter-
reflection, material density, gradients, etc. This class of volume rendering models
has in general a rendering time complexity of O(N3), where N3 is the volume
size, since the whole dataset has to be sampled entirely per frame.

The second class of algorithms work in Fourier space. Introduced by Levoy
[8] and Malzbender [9], this method sacrifices some features –which object space
algorithms offer– against rendering speed. In FVR, the original dataset is 3D
Fourier transformed in O(N3logN) time in the preprocessing phase. During ren-
dering, a plane through the center of the Fourier transformed data representation
is sampled perpendicularly to the viewing direction and 2D inverse Fourier trans-
formed in O(N2logN) time. The Fourier Projection-Slice Theorem tells us, that
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the so obtained image contains an unweighted projection of the sample points
of the input dataset from the given view. This leads to occlusion free X-ray like
images, since ray attenuation can not be modelled in dependence of the actively
cumulated opacity of the voxels. It was soon recognized, that occlusion-free pro-
jections are difficult to interpret and a X-ray like linear depth cueing illumination
model with directional shading was introduced [8]. The latter method can sup-
port the observer in estimating positions of anatomical entities, but projections
remain occlusion free.

In this work we eliminate some disadvantages of standard FVR methods.
In particular, we extract material boundaries on surfaces in Fourier space. This
problem was already considered for medical questions in object space [1,2], rather
than Fourier space. In this work, we show, how this technique can be derived
and implemented in Fourier space. We show three important applications which
makes our technique attractive: (i) extraction of object, rather than screen-space
contours, (ii) noise reduction and (iii) removal of non-contributing samples to
obtain better visibility of the contours. To accomplish these we adopt the reflec-
tion equation for shading in context of FVR [3] formulated in terms of Spherical
Harmonics. The main difference is the novel interpretation of the terms appear-
ing in the equation: (i) instead of the incoming light used originally to shade the
surface the gradient magnitude is plugged in to emphasize areas of high contrast
and (ii) instead of the cosine projection term we use a sine transfer function
to highlight surfaces with normals perpendicular to the viewing direction (cf.
Section 3 for details). Our technique is of special interest for radiologists who
work with X-ray like projections of the given dataset and who want to obtain a
better insight to spacial relationships of the investigated medical material.

2 Shading Using Spherical Harmonics

Spherical harmonic (SH) approximation of an illumination model allows for shad-
ing of the dataset without recalculating the entire 3D transform per frame. The
method derived here is a generalized view on the methods of Entezari et al. [3]
and Ramamoorthi and Hanrahan [11]. Their derivation is tailored to lighting
voxels/surfaces; we, however, deduce a method for contour extraction.

Normalized SHs are a rotational invariant group of functions that form an
orthonormal basis on the unit sphere. While mostly described in complex form,
a real representation is available saving memory representing the imaginary part
[3]. Any function of finite energy on the sphere may be approximated to any
degree of accuracy in terms of SHs Ylm(θ, φ) using the expansion

f(θ, φ) =
∑

l

∑

m

flmYlm(θ, φ) (1)

where flm =
∫ 2π

0

∫ π

0 f(θ, φ)Y ∗
lm(θ, φ)sinθdθdφ. The radiance on a surface (or

more specifically, on a voxel position) in its original setting is given by

E =
∫

Ω′
i

L(ωi)ρ(ω′
i, ω

′
o)max(cosθ′

i, 0)dω′
i (2)



472 Z. Nagy, M. Novotni, and R. Klein

where subscript i (o) denotes the incoming (outgoing) light direction, the global
(local) coordinate system is unprimed (primed), L(ωi) is the incoming light,
ρ(ω′

i, ω
′
o) is the BRDF (bidirectional reflection distribution function) over the

upper hemisphere Ω′
i and max(cosθ′

i, 0) is a transfer function preventing the
surface from being lit from behind. For the case that diffuse shading is assumed
(ρ = 1/π=const.), and an arbitrary transfer function f(θ, φ) is chosen, we obtain
omitting ρ

E =
∫

Ω′
i

L(ωi)f(ω′
i)dω′

i (3)

By expanding L(ωi) =
∑

l

∑
m LlmYlm(ωi) and f(ω′

i) =
∑

l

∑
m flmYlm(ω′

i),
substitution into equation (3) leads to the general formulation

E =
∑

l

∑

m

∑

p

∑

q

Llmfpq

∫

Ω′
i

Ylm(ωi)Ypq(ω′
i)dω′

i (4)

Note, that two different coordinate systems are assumed here (primed and un-
primed). To rotate the primed system into the unprimed one, the canonical ro-
tation formula using the coefficients related to the matrix of the rotation group
SO(3) [11]

Ylm(ωi) = Ylm(Rαβ(ω′
i)) =

l∑

m′=−l

Dl
mm′(α)eimβYlm′(ω′

i) (5)

is used, where Rαβ(ω′
i) represents the rotation into the unprimed coordinate

system. Applying this rotation in equation (4) leads to

E =
∑

l

∑

m

∑

p

∑

q

Llmfpq

∑

m′
Dl

mm′(α)eimβ

∫

Ω′
i

Ylm′(ω′
i)Ypq(ω′

i)dω′
i (6)

Due to the orthogonality relationship of SH the integral portion is nonzero iff
l = p and m′ = q. Using the relations Dl

m0(α)eimβ =
√

4π
2l+1Ylm(α, β) and

Llm = Ylm(θL, φL) [3] we obtain a specialized formulation for functions f with
no asimuthal dependence (fpq is zero for q �= 0):

E =
∑

l,m,p

Llmfp0

∑

m′
Dl

mm′(α)eimβδl,pδm′,0 =
∑

l,m

√
4π

2l + 1
Ylm(ωL)fl0Ylm(α, β)

(7)
To use latter equation for contour extraction, three requirements have to be met.
First, appropriate SH coefficients fl0 have to be found which model the brightness
of a contour in dependence of the viewing vector and the local gradient. An
explicit formula is derived for this in the appendix. Second, note that equation (7)
is derived for diffuse shading, i.e. the illumination is independent of the viewer.
Fortunately, for contour extraction, we can set the light direction ωL collinear to
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the viewing direction ωV : ωV = ωL, therefore this is implicitly solved. Thirdly,
we want to weight a voxel individually, depending on the gradient magnitude,
to remove homogeneous regions and to obtain a high degree of visibility of the
contours. This is done in the following section.

3 Contour Extraction

Equation (7) is the key equation for general diffuse lighting of a surface, when the
lighting distribution and the transfer function can be represented in terms of SH
coefficients Llm and flm, respectively. From this general setting, we can derive
a special case, which allows for the enhancement of contours in Fourier space.
We regard a sample in the volume as a contour sample, iff < ωV , ωN >= 0, i.e.
the viewing vector ωV is perpendicular to the normal ωN of the given sample.
In the following, a metric of the degree of how much the active sample is likely
to be a contour sample is given by the function f :

f(θ′
i, φ

′
i) = f(θ′

i) = sin(θ′
i)

2k, k ∈ N0, θ
′
i = cos−1(< ωV , ωN >) (8)

In our experiments, we used k = 8. The motivation for using this function is to
emphasize samples with gradients near-to-orthogonal, in order to induce enough
illumination energy for the final projection.

The last thing missing in our considerations is the weighting of the scalar
voxel values in dependence of the gradient length. We use a squared version of
the gradient length to overemphasize positions with high gradient length:

Eweighted = E · ||−→ωN ||22 =
∑

l

∑

m

√
4π

2l + 1
||−→ωN ||22Ylm(ωV )fl0Ylm(ωN ) (9)

where ||−→ωN ||2 denotes the length of the respective vector N at the surface (or
voxel) position.

4 Algorithm

Equation (9) describes the shading at a voxel position in dependence of the
local normal N and the global viewing vector V. Applying the Fourier transform
operator F { } results in

F{Eweighted} =
∑

l

∑

m

√
4π

2l + 1
Ylm(ωV )fl0F{||−→ωN ||22Ylm(ωN )} (10)

The usage of this equation is as follows. During preprocessing, vol-
umes Vlm are initialized with their respective voxel values Vlm(x, y, z) =
||−→ωN ||22Ylm(θxyz, φxyz), 0 ≤ l ≤ M, −l ≤ m ≤ l. The 3D Fourier transform is
then applied on every volume Vlm. During rendering, we sample slices Slm(x′, y′)
through the origins of every transformed dataset F{Vlm} perpendicularly to the
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viewing direction ωV . Slice Slm(x′, y′) is weighted by
√

4π
2l+1Ylm(ωV ) at every

sample point. Finally, the weighted slices are summed up componentwise and
the inverse 2D Fourier transform is executed on the result, leading to the desired
projection for the current viewing direction.

5 Results and Discussion

In figure 1 we compare rendering results of the conventional FVR algorithm (1st

and 3rd row) with our method (2nd and 4th row), using the head, skull (both
obtainable from www.volren.org) and the Visible Female dataset. The examples
show applications in three main areas.

Hidden feature emphasis. The head dataset (left column) exemplifies how
our algorithm is capable of recovering features when the material density of the
input dataset is high. We are able to emphasize transitions between air and skull,
skull and cerebrospinal fluid, and boundaries around the corpus callosum.

Noise reduction. The skull (middle column) is an example for an extremely
noisy dataset. The projection quality is worsened by the fact, that this property
is amplified by ”ghosting” artifacts of ordinary FVR. Since noise in more likely
contained with low gradient portion, our algorithm removes it significantly. Fur-
thermore, the contours of the teeth appear sharper here than with the traditional
method.

Boundary and contrast enhancement. Finally, we were able to recog-
nize some important spatial relationships on the Visible Female dataset (right
column) using our method. While ordinary FVR leads to strongly diffuse pro-
jections of the dataset, we were able to relate exterior structures, like the run of
the skin, the ears, the lips, with interior structures like the (upper and lower)
jaw and the spinal court using our algorithm.

All three datasets used have a size of 1283 voxels, where the second and third
one were downsampled to this size in order to reduce memory requirements.
Rendering times are identical for every view and dataset, with about 3 fps on
an 3.06 GHz Intel P IV with 1 GByte RAM.

A little caveat of our method is the somewhat high memory consumption.
When using three non-negative SH coefficients, 15 datasets have to be used with
4Bytes at each voxel for the real and the imaginary part, respectively. Since we
work with real SHs, the input volumes are real, and according to Fourier theory
F (u, v) = F ∗(−u, −v), i.e. the Fourier transformed dataset is symmetric with
respect to the origin up to conjugation. Thus, memory can be saved by a factor
of two. Lossy methods for further memory reduction like vector compression can
be incorporated- this is part of future work.

6 Conclusion and Future Work

The intention of this work was to make FVR a more viable alternative in volume
visualization, when it comes to explore medical datasets via X-ray like volume
rendering techniques. Due to its reduced runtime complexity, the importance of
our method in a quantitative sense will grow, when datasets will become larger.
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head skull Visible Female

Fig. 1. Rendering results. We exemplify our method on three datasets, namely the
head (1st col.), skull (2nd col.) and Visible Female dataset (3rd col.). 1st and 3rd

row: conventional FVR. 2nd and 4th row: respective counterparts of our method using
contour extraction.
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From a qualitative point of view, we introduced three types of applications in
medical visualization: recovery of hidden features, noise removal, and detection
of boundaries. This type of exploration is especially valuable, when the radi-
ologist works with X-ray like projections of the input material. We also have
to mention, that the results can not be obtained by applying image processing
operators on the respective projections, since high material density mostly leads
to a cumulation and hiding of underlying 3D features, resulting in projections
with more feature-less, homogeneous areas.

From a theoretical point of view, we created a Fourier projection algorithm,
which is capable of lighting features in the dataset in dependence of the local
sample values at interactive rates without the requirement to recalculate the
dataset for every view. This is a remarkable property of our algorithm, since
spatial properties are normally difficult to localize in Fourier space. We also
proved that the first three non-zero coefficients of the SH expansion are sufficient
to represent the contour extraction function with an accuracy of about 94.7%.
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A Appendix

A.1 Explicit Formula for fl0

fl0 can be obtained using equation (5) on p. 143 of [14] by specialization setting
f(θ, φ) = f(θ) = (sinθ)2k, and by observing that Y ∗

l0(θ) = Yl0(θ) = Pl(cosθ):

fl0 =

√
2l + 1

4π

∫ 2π

0

∫ π

0

(sinθ)f(θ)Yl0(θ)dφdθ =
√

π(2l + 1)

∫ π

0

(sinθ)2k+1
Pl(cosθ)dθ, (11)

where Pl(x) is the Legendre polynomial of the first kind. By plugging x = cosθ
into Equation (7) on p. 24 of [5] we obtain

∫ 1

−1

x
2k

Pl(x)dx =

∫ π

0

sinθ(cosθ)2k
Pl(cosθ)dθ =

{
0 2k < l or l odd

2(2k−l+2;1;l)
(2k−l+3;2;l) otherwise

(12)

where (m; d; ν) := m(m+d)(m+2d)...(m+(ν−1)d). Thus, using the relationship
sinθ =

√
1 − cos2θ and the binomial theorem, we obtain for 2k ≥ l and l even

fl0 =
√

π(2l + 1)

∫ π

0

(sinθ)2k+1
Pl(cosθ)dθ =

√
π(2l + 1)

∫ π

0

sinθ(1 − cos
2
θ)k

Pl(cosθ)dθ

=
√

π(2l + 1)

k∑

n=0

(−1)n

(
k
n

)∫ π

0

sinθ(cos
2n

θ)Pl(cosθ)dθ

=
√

π(2l + 1)

k∑

n=0

(−1)n

(
k
n

)
2(2n − l + 2; 1; l)
(2n − l + 3; 2; l)

and zero, otherwise.

A.2 Quality of the Approximation of f(θ)

The Parseval condition (see p. 144 in [14]) states, that

F :=

∞∑

l=0

l∑

m=−l

|flm|2 =

∫ 2π

0

∫ π

0

|f(θ, φ)|2sinθdφdθ (13)

If F is finite, the residual error can be determined from this formula when f(θ, φ)
is approximated with the first t terms only. Plugging the analytical expression
for f into equation (13) leads to the residual error

R :=

∫ 2π

0

∫ π

0

(sinθ)4k+1
dφdθ −

t∑

l=0

|fl0|2 (14)

In particular, for k=8 and t=4, we obtain F=2.720966695 and R=2.576686223,
thus 94.7% of the energy is contained in the expansion using the first three
non-zero coefficients.
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