
Relay Attacks on Bluetooth Authentication and
Solutions

Albert Levi1, Erhan Çetintaş2, Murat Aydos3, Çetin Kaya Koç4, M. Ufuk Çağlayan5

1 Sabanci University, Fac. of Eng. & Nat. Sci., Orhanli, Tuzla, TR-34956, Istanbul, Turkey
levi@sabanciuniv.edu

 2 TUBITAK – UEKAE, National Research Institute of Electronics and Cryptology,
Gebze, TR-41470, Kocaeli, Turkey

cetintas@uekae.tubitak.gov.tr
3 Pamukkale University, Dept. of Computer Engineering, Denizli, TR-20020, Turkey

maydos@pamukkale.edu.tr
4 Oregon State Univ., School of Electr. Eng. & Comp. Sci., Corvallis, OR 97331 USA

koc@ece.orst.edu
5 Boğaziçi University, Dept. of Computer Engineering, Istanbul, TR-34342, Turkey

caglayan@boun.edu.tr

Abstract. We describe relay attacks on Bluetooth authentication protocol. The
aim of these attacks is impersonation. The attacker does not need to guess or
obtain a common secret known to both victims in order to set up these attacks,
merely to relay the information it receives from one victim to the other during
the authentication protocol run. Bluetooth authentication protocol allows such a
relay if the victims do not hear each other. Such a setting is highly probable.
We analyze the attacks for several scenarios and propose practical solutions.
Moreover, we simulate attacks to make sure about their feasibility. These
simulations show that current Bluetooth specifications do not have defensive
mechanisms for relay attacks. However, relay attacks create a significant partial
delay during the connection that might be useful for detection.

1 Introduction and Background

Bluetooth [1] is a promising short-range radio link technology for wireless
connectivity of portable electronic devices, such as mobile phones, laptop computers,
palm computers and digital cameras. The Bluetooth system operates in the 2.4 GHz
ISM (Industrial Scientific Medicine) band. In order to avoid interference with other
piconets (piconet is Bluetooth’s personal/local area network) and/or other devices
using the ISM band, the master of a piconet synchronizes its slaves to hop among
several RF channels in a pseudo-random sequence.

Bluetooth specification defines link level security mechanisms to provide
confidentiality, integrity and authentication between Bluetooth devices. However,
there are some vulnerabilities in the Bluetooth security as proposed in [2, 3, 4].

In this paper, we point to relay attacks on Bluetooth authentication protocol. In
relay attacks, the attacker places itself in two distinct piconets and picks two victims,

one in each piconet. The attacker impersonates those victims by forwarding
authentication messages generated by one of them to another between the piconets.
As opposed to the man-in-the-middle attacks described in [2], the attacker does not
need to know any shared secret between the victims in order to set up our relay
attacks. We simulate relay attacks to assess their feasibility. Moreover we use
simulation to evaluate the delays caused by the attack and to see if these delays could
be used as a detection mechanism. We propose two other low-cost solutions as well.

The rest of Section 1 gives an overview of Bluetooth key management and
authentication scheme. Relay attacks are explained in Section 2. Mechanisms to
detect relay attacks are proposed in Section 3. Simulation results are presented in
Section 4. Conclusions and some discussions are in Section 5.

1.1 Key Management and Authentication in Bluetooth

There are several key types in Bluetooth, but the attacks described here depend on the
initialization and combination keys. Initialization key (Kinit) is calculated at both sides
of communication using a pre-shared PIN, a random number and a Bluetooth Device
Address (BD_ADDR). Kinit is used to exchange the Combination Key, which is one of
the members of the Bluetooth “Link Key” family. These keys are used for
authentication. Both ends of communication, say A and B, contribute to the
combination key (KAB) in a secure way by encrypting some random numbers. Current
link key or Kinit is used as the key for this encryption. Link keys are stored in
Bluetooth devices and they are reused whenever necessary.

Bluetooth uses a simple challenge-response authentication scheme. The verifier
sends a 128-bit random number called AU_RAND to the claimant. Claimant
calculates the authentication response called SRES, which is a cryptographic function
of AU_RAND, its own BD_ADDR, and the current link key. Claimant sends SRES to
the verifier. Meanwhile the verifier computes the same SRES and checks whether the
computed one is equal to the received one. If so, that means the claimant is really who
it claims to be.

2 Relay Attacks

In this section, we describe relay attacks proposed in the paper. In the relay attacks,
adversary C talks to victim A posing as victim B, and to B posing as A. All
authentication messages that C needs are generated by real A and B. C conveys these
messages from A/B to B/A. We present two types of relay attacks: (i) two-sided, and
(ii) one-sided. In a two-sided relay attack, both victims are impersonated. In a one-
sided attack, only one victim is impersonated.

In [2], some man-in-the-middle and impersonation type of attacks are proposed
where the attacker knows or can guess the PIN or existing link key between victims.
Relay attacks are similar to man-in-the-middle attacks. There exists an adversary
located between the sender and receiver, but the only activity of the adversary is to
relay information that it receives from one to another without changing the content.
Unlike the attacks in [2], the adversary does not need to know a shared secret.

2.1 Special Conditions of Bluetooth and Attack Settings

Relay attacks are possible if:
(i) actual communication between the real sender and receiver is disconnected and

they cannot listen to each other anymore,
(ii) network infrastructure does not have a global infrastructure for routing and

locating its users, and
(iii) adversary is capable enough to impersonate each of the victims to the other, even

if the victims are located in distant locations.
As an example attack setting, suppose the victims A and B have communicated for

some time and then terminated the communication. They may easily end up in
different locations due to their mobile and ad-hoc behavior. In this example, we
assume two users working in the sales department of a Bluetooth-enabled office.
These two users exchange their data using a service configured in Bluetooth Security
Mode 3 that requires only authentication. It is assumed that no encryption and
application layer security are employed for this service. The users’ laptops are
normally part of a piconet within their department, but whenever one of them moved
to conference room for a meeting, it becomes a part of the piconet in the conference
room. Even if they might be close to each other, they cannot listen to each other since
every piconet has a different frequency hopping order. Once the attacker impersonates
the users, it can, for example, transfer fraudulent data or alter sales reports.

Although there are valuable efforts in the literature for forming and routing for
Bluetooth Scatternets [7, 8, 9], the short-range characteristics of Bluetooth devices
would not enable to have a Bluetooth-based global ad hoc network, thus satisfying the
feasibility of the conditions (i) and (ii) above. One may argue that some application
layer Bluetooth profiles, such as IP over Bluetooth, could provide global connectivity.
However, such applications should be implemented over L2CAP (Logical Link
Control and Adaptation Protocol) and consequently the LMP (Link manager Protocol)
layers of Bluetooth at which relay attacks are implemented. Thus, such global
connectivity does not help to avoid relay attacks since packets used in the relay
attacks remain local and do not pass through the gateways.

In order to satisfy condition (iii), the adversary, C, should contain two different
Bluetooth units, Ac and Bc (Ac and Bc denote A and B impersonated by C), with
adjustable BD_ADDRs. Ac should be located close to B, and Bc close to A. The
adversary C is also equipped with a special communication interface between Ac and
Bc. This interface is not necessarily a Bluetooth interface; actually Bluetooth is not
useful for communication between Ac and Bc if they are far apart. Some other
wireless or wired methods can be used for communication between distant Ac and Bc.
Moreover, C should know the pseudo-random frequency hopping order of real A and
B in order to eavesdrop on their communication. Jakobsson and Wetzel proposed a
method to determine this order in [2].

Each Bluetooth device is identified using an overt and fixed Bluetooth Device
Address (BD_ADDR). It is embedded in the device and normally not changeable.
However, a hostile manufacturer can build a Bluetooth device with an adjustable
BD_ADDR. With the current trend of increased Bluetooth deployment in almost all
type of mobile devices, attacks on Bluetooth may create a spying market and such
manufacturers may come into sight.

2.2 Two-sided Relay Attack

This attack is shown in Figure 1. Here, C must wait for a real request for connection
from either A or B. Suppose real A wants to establish connection to B. The connection
establishment process starts with the paging procedure. A first pages Bc thinking that
it is real B. After the paging procedure, A sends LMP_host_connection_req command
to Bc. Bc accepts the connection request by sending back LMP_accepted. Meanwhile,
Ac pages B and initiates a connection establishment procedure posing as A.

The above connection establishment process is valid if victims A and B are distant.
If they are close to each other, in order A to connect Bc instead of B, the attacker’s Bc
interface must respond to the paging request faster than B. The details of such a
setting are described by Kügler [4]. In addition, Kügler [4] also discusses that the
attacker’s Ac interface must use a clock value different from the clock of A. Thus,
both A and B use the same frequency hopping order with different offsets and do not
hear each other.

The current link key between A and B may or may not be changed at each
connection. The attacker does not need to know this key. Thus, changing the link key
or using the current one do not cause any problem in attack setting. If the link is to be
changed, then the next step is the exchange of combination key contributions (the
random numbers which are encrypted by XORing with the current link key). A sends
its encrypted random number, RAND_NRA, to Bc in an LMP_comb_key command.
C, using its Ac interface, relays this encrypted random number to real B as if it is sent
by A. After receiving this number, B sends out its encrypted random number
RAND_NRB to Ac, and C forwards it to real A while wearing its Bc hat. After these
message rounds, both real A and real B compute the same combination key KAB and
this key is assigned as new link key.

 A Bc Ac B C

LMP_setup_complete LMP_setup_complete
LMP_setup_complete LMP_setup_complete

LMP_sres(SRESB)LMP_sres(SRESB)

 LMP_au_rand(AU_RANDB) LMP_au_rand(AU_RANDB)

LMP_sres (SRESA) LMP_sres(SRESA)

 LMP_au_rand(AU_RANDA) LMP_au_rand(AU_RANDA)
/*Authentication Steps*/ /*Authentication Steps*/

 LMP comb key(RAND NRB)

 LMP_comb_key(RAND_NRA)
/*Key exchange Steps*/ /*Key

LMP_comb_key(RAND_NRA)

LMP_comb_key(RAND_NRB)

 exchange Steps*/

LMP_accepted LMP_accepted

LMP_host_connection_req LMP_host_connection_req

Paging Procedure Paging Procedure

Fig. 1. Two-sided relay attack

The next steps are for authentication. A sends LMP_au_rand command to Bc
(thinking that it is B) along with a 128 bit random number called AU_RANDA. After
sending AU_RANDA, A expects the corresponding authentication response SRESA.
Bc cannot calculate SRESA, since it does not know the current link key, but C (using
its Ac interface) can forward AU_RANDA to real B in another LMP_au_rand
command as if A requests authentication of B. The response of real B to this command
is an LMP_sres command that contains SRESA. C forwards SRESA to A in another
LMP_sres command as the authentication response of Bc. After that A thinks that B is
authenticated, but the truth is that Bc is authenticated. Similar steps are taken in the
case of mutual authentication where B requests authentication of Ac thinking that it is
A. At the end, both A and B think that they authenticated each other, but the fact is
that C impersonated both of them. C exploits both real A and B to generate
authentication responses SRESB and SRESA.

If there is no existing link key established beforehand or the link key is somehow
unavailable (e.g. lost, compromised, expired, etc.), then A and B should initiate Kinit
generation before combination key generation steps. Two-sided attack works in such
a setting too, because the attacker would only need to relay some messages as in
combination key generation steps.

2.3 One-sided Relay Attack

The adversary C can make use of this attack by initiating communication with one of
the victims impersonating the other one. This attack is possible only when the victims
can be convinced to use the existing link key.

 A Ac Bc C B

Paging Procedure Paging Procedure

LMP_host_connection_req LMP_host_connection_req

LMP_accepted LMP_accepted

LMP_au_rand(AU_RANDAc)

LMP_sres(SRESAc)

 LMP_au_rand(AU_RANDB) LMP_au_rand(AU_RANDB)

LMP_sres(SRESB) LMP_sres(SRESB)

LMP_setup_complete LMP_detach

LMP_setup_complete

Fig. 2. One-sided relay attack

Figure 2 depicts one-sided attack. In this attack, C impersonates A to talk to B. We
assume that real A and B already have a link key established. Communication is
requested by C (Ac). In order to make new connection Ac first pages B and then sends
LMP_host_connection_req command to B. B accepts the connection request by

sending back LMP_accepted. At the same time Bc pages A and starts the connection
establishment procedure with A. After the first step, Ac sends LMP_au_rand to B. In
this command Ac includes a dummy random number AU_RANDAc. B wrongfully
thinks that real A requests authentication and sends back the corresponding
authentication response SRESAc. Ac has no way to check the correctness of SRESAc,
so it implicitly assumes that real B is indeed genuine. Having sent SRESAc, B sends its
authentication challenge AU_RANDB to Ac. Ac should obtain SRESB, which is the
SRES corresponding to AU_RANDB, so C sends out AU_RANDB to real A using its
Bc interface. Real A mistakenly thinks that B requests authentication, and calculates
and sends SRESB to Bc. Then Ac forwards SRESB to real B. The connection setup is
completed by mutually sending LMP_setup_complete. These steps authenticate Ac to
B as if Ac were the real A. At the end Bc sends an LMP_detach command to end its
communication with real A, since A is not needed anymore.

Although the above attack explanation is for distant victims, it also works for close
ones by using different clock values as explained in Section 2.2 for two-sided attack.

3 Proposed Solutions

In this section, we propose three practical solutions to detect relay attacks.

3.1 Solution 1: for Victims in Close Piconets

One method for preventing the relay attacks is to include unforgeable piconet-specific
information in SRES calculation. Such information could be hop sequence
parameters, channel access code, which is added to each packet sent within the
piconet, and the sync word, which is part of the channel access code. Unfortunately
all of them are based on LAP (lower address part) of master’s BD_ADDR and/or
master’s clock. Since the attacker is the master in one of the piconets, it can enforce
those parameters that are learned from the other piconet where the attacker is a slave.
The only exception is when these two piconets are close to each other. Channel access
code, sync word, hop sequence and phase cannot be the same for those piconets due
to interference problems. That means piconet specific information based relay attack
control works for close piconets.

Implementation of this control is easy. It is sufficient to consider master’s clock
and LAP values in SRES calculation. To do so, the least significant 42 bits of the
AU_RAND values could be XORed with the concatenation of clock and LAP values
at each piconet for SRES calculation and verification. Real A and B use different
clock and/or LAP values since the attacker cannot enforce the same values, because
otherwise messages of two piconets mix up. The updated authentication mechanism is
shown in Figure 3. The original Bluetooth authentication scheme does not have the
XOR part, i.e. AU_RAND is directly fed into E1 boxes.

Fig. 3. Updated Bluetooth challenge-response authentication scheme that is sensitive to piconet
(master) clock and LAP.

3.2 Solution 2: for One-sided Relay Attack

In the original Bluetooth scheme, mutual authentication is performed exclusively
between master and slave. First, one is authenticated with AU_RAND (challenge) and
SRES (response) exchange. Then the other is authenticated again using a
challenge/response mechanism. We propose to change this authentication message
exchanges in a nested form such that first both parties exchange their AU_RAND
values and claimant does not send its SRES before getting the legitimate SRES from
the verifier. This message exchange is shown in Figure 4.

LMP_au_rand (AU_RANDV)

LMP_sres (SRESV)

LMP_au_rand (AU_RANDC)

LMP_sres (SRESC)

Verifier Claimant
/*Authentication steps*/

Claimant verifies
SRESc first. If correct,
then it sends SRESv

Fig. 4. Nested mutual authentication

In this method, which is effective against one-sided attack, the attacker cannot
obtain SRES values from the victims, since both victims first wait for the SRES value
from the other party (i.e. from the attacker). Since the attacker acts as a verifier in
both piconets, its authentication challenge is responded with another authentication
challenge from the genuine entities; SRES values are not sent and protocol eventually
times out. Unfortunately, nested mutual authentication does not solve the problems
associated with two-sided attacks. One of the victims is the verifier in that scenario,
so the attacker can obtain the SRES from it.

3.3 Solution 3: Variance in Delays

This solution is based on consideration of variance in end-to-end delays between
normal connection cases and attack cases, as will be discussed in Section 4.

4 Simulation Results

In order to analyze the effectiveness of the proposed relay attacks, we developed a
simulator using C++ programming language that simulates baseband link connection
and authentication procedures according to the baseband, security and LMP
specifications.

First, we implemented the attack scenarios in our simulation environment and Link
Manager transactions of the simulated Bluetooth devices are compared in normal
connection and attack cases. During this analysis, we have realized that there is
absolutely no difference in terms of transaction outputs between attacked victims and
a non-attacked ones. Thus, we conclude that victim devices cannot be aware of the
relay attacks by checking connection establishment transactions. These transaction
outputs are not shown here because of space restrictions.

4.1 Timing Analysis

In our attack scenarios, one victim waits for receiving the authentication response
SRES while the attacker is getting this SRES from the other victim. If this duration is
too much, LMP response timeout may exceed. In addition, due to relay attacks the
connection establishment process may take long time and one of the victims may be
aware of the attack. Thus, in our experiments we measure the connection
establishment time and the latency in receiving LMP_SRES. Here only the timings of
successful transmissions are taken into account. In case of retransmissions, which are
probable in Bluetooth, the baseband layer should inform link manager so that the
corresponding timers are reset.

We first measured connection establishment times during normal connection cases
and attack cases. Particular increase has been noticed in the connection time of an
attacked victim as compared to non-attacked one. However, as discussed in [5],
connection time can vary between devices which are produced by different
manufacturers or whose clocks are not initially well synchronized. Thus we conclude
that the increase was not big enough in order to conclude that connection time
increase could be used as an attack detection mechanism.

In our experiments, we also considered how our relay attacks affect the duration
between sending LMP_AU_RAND command and receiving LMP_SRES response in
victim devices A and B. Figure 5 shows a histogram of the latency in receiving
LMP_SRES in the normal connection establishment. A obtains the link key from Host
A before receiving LMP_AU_RAND from B. However, B gets the link key after
receiving LMP_AU_RAND from A. Therefore, A waits longer than B to receive
LMP_SRES. The average waiting time is 10.378 ms for A and 2.008 ms for B.

Figure 6 and Figure 7 show the histograms of the waiting times for receiving
LMP_SRES response in two-sided and one-sided relay attacks.

9661000

0
50

100
150
200
250
300
350
400
450
500

4 8 12 16 20 24 28 32 36

Time (ms)

Fr
eq

ue
nc

y
of

 th
e

w
ai

tin
g

tim
es

 in
 re

ce
iv

in
g

LM
P_

sr
es

Device B
Device A

Fig. 5. Histogram for the waiting times for receiving LMP_sres in the normal connection

0

200

400

600

800

1000

12 24 36 48 60 72 84 96
Time (ms)

Fr
eq

ue
nc

y
of

 th
e

la
te

nc
y

in
re

ce
iv

in
g

LM
P_

sr
es

Device A
Device B

Fig. 6. Frequency of the latency in receiving LMP_sres in two-sided relay attack

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Time (ms)

Fr
eq

ue
nc

y
of

 th
e

la
te

nc
y

in

re
ce

iv
in

g
LM

P_
sr

es

Device B

Fig. 7. Frequency of the latency in receiving LMP_sres in one-sided relay attacks

In two-sided relay attack, the average latency in receiving LMP_SRES for A and B
is 50.978 and 39.625 ms respectively. As we see in Figure 7, most of the waiting
times are between 50 ms and 80 ms (on average 62.578 ms) in one-sided relay attack.
Thus we conclude that relay attacks increase the latency in receiving LMP_SRES
response; two-sided relay attack increases this latency 5 times in A and 20 times in B.
Similarly, the latency in one-sided relay attack is 30 times more than the latency in
the normal connection. According to Bluetooth Link Manager Protocol specification,
the time between receiving an LMP PDU and sending a valid response PDU must be
less than the LMP response timeout, which is 30 seconds. Therefore, the LMP
response timeout does not expire due to relay attacks. However, if enough intelligence
is added to LMP protocol, the victims may detect the relay attacks by checking the
considerable increase in latency of getting LMP_SRES response. For example, one
device measures average delays in connection establishment processes and stores
these values in its memory. During each connection, it estimates the current delay by
considering a sequence of previous delays and then compares the estimated delay
with new measured one. If there is a major difference, then the device may decide that
there is an attack going on. One possible method for estimating the current delay
would be simply to compute arithmetic average of stored delays. Since it is not
necessary to store all past delays, this method is appropriate for devices with limited
memory resources. Another method for the current delay estimation would be to
compute exponential average delay by using the smoothing procedure as in the TCP
protocol. With this method, we can give the most recent measurements a greater
weight than the older ones. Dynamically estimating the current delay reduces the
impact of transmission errors in decisions about the relay attacks.

5 Conclusion and Discussions

We present two important relay attacks on Bluetooth authentication method for
impersonation purposes. The adversary need not obtain any secret (like PINs or
current keys) of the victims. He/she simply relays some protocol messages from one
victim to another without alteration.

Relay attacks are to make fail only Bluetooth authentication, not encryption. The
attacker cannot continue its attack if the victims prefer to have encrypted
communication. However, in Bluetooth specification [1], having no encryption is a
valid option, and during negotiation the adversary can indeed convince the victims not
to have encrypted communication. Bluetooth authentication is performed to
authenticate entities, not messages, mostly for access control decisions. Traditionally
access control does not require encrypted communications, once the access is granted.
Thus, message encryption and entity authentication need not coexist all the time. As
suggested in [6], it is conceivable that a device might want to perform only-
authentication because it was not using encryption on the link, but it still wants to
check if it is communicating with the correct device. The processing power
limitations of a device might not let it use encryption that requires constant
processing. However, authentication is once-per-session and can be tolerated even for
restricted devices.

Relay attacks are based on a deception: both victims think they are in the same
piconet. However, they are not. They are actually in different piconets. If the victims
can include some information about their actual piconets in SRES, then relay attacks
could be detected. As discussed in this paper, such piconet-specific information is
unfortunately forgeable by the attacker, if the piconets are not close to each other. If
they are close, then inclusion of LAP (lower address part) of the master BD_ADDR
and master clock in SRES messages solves the problem. Such a solution is of limited
use, but does not cause a remarkable load on the entities; the extra processing is just
an XOR computation. Another limited use, but efficient precaution could be to
exchange the challenge messages (AU_RAND) before sending out the responses
(SRES). The claimant waits for the SRES for its challenge first. In this way, it does
not give out the SRES to be relayed. This solution works only if the attacker is the
verifier in both piconets. This situation corresponds to the one-sided attack described
in this paper.

In the simulations of the attacks, we have realized that the victims cannot detect
relay attacks if they strictly follow Bluetooth specifications. On the other hand, our
analysis of the simulation results demonstrates that there is a perceptible variation in
some end-to-end delays between the normal and the attacked connections. One device
can estimate the current delay by observing the pattern of delay for recent connection
establishments, and then compare the estimated delay with new measured one. A
significant increase means that there may be an attack going on. Simple average or
exponential average methods would be used for the current delay estimation. Such an
intelligent adaptive mechanism can be incorporated in Bluetooth connection
establishment procedure at LMP level to determine both types of relay attacks in a
low-cost and effective way.

References

1. Bluetooth SIG, “Specification of the Bluetooth System – Bluetooth Core Specification,
volumes 0-3,” version 1.2, available at http://www.bluetooth.org, November 2003.

2. M. Jakobsson, and S. Wetzel, “Security Weaknesses in Bluetooth,” in Proc. CT-RSA 2001,
LNCS 2020, Springer-Verlag, pp. 176 – 191, 2001.

3. J. T. Vainio, “Bluetooth Security,” http://www.niksula.cs.hut.fi/~jiitv/bluesec.html, 2000.
4. D. Kügler, “Man in the Middle” Attacks on Bluetooth, 7th International Financial

Cryptography Conference, LNCS 2742, Springer-Verlag, pp. 149-161, 2003.
5. E. Welsh, P. Murphy, P. Frantz, Improving Connection Times for Bluetooth Devices in

Mobile Environments, International Conference on Fundamentals of Electronics,
Communications and Computer Sciences (ICFS), Tokyo, Japan, March 2002.

6. J. Bray, and C. F. Sturman, “Bluetooth: Connect Without Cables,” Prentice-Hall, 2000.
7. P. Bhagwat, A. Segall, A routing vector method (RVM) for routing in Bluetooth scatternets,

1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC'99)
8. Z. Wang, R. J. Thomas, and Z. Haas, Bluenet -- a new scatternet formation scheme, 35th

Annual Hawaii International Conference on System Sciences, January 2002.
9. R. Kapoor, and M. Gerla, A Zone Routing Protocol for Bluetooth scatternets, WCNC 2003.

