
A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 259–262, 2004.
© IFIP International Federation for Information Processing 2004

ABHA: A Framework for Autonomic Job Recovery

Charles Earl1, Emilio Remolina1, Jim Ong1, John Brown2, Chris Kuszmaul3, and
 Brad Stone4

1 Stottler Henke Associates
{earl,remolina,ong}@shai.com

2Pentum Group,Inc.
johnbrown@pentum.com

3chris_kuszmaul@hotmail.com
4bstone@aspirinsoftware.com

Abstract. Key issues to address in autonomic job recovery for cluster
computing are recognizing job failure; understanding the failure sufficiently to
know if and how to restart the job; and rapidly integrating this information into
the cluster architecture so that the failure is better mitigated in the future. The
Agent Based High Availability (ABHA) system provides an API and a
collection of services for building autonomic batch job recovery into cluster
computing environments. An agent API allows users to define agents for failure
diagnosis and recovery. It is currently being evaluated in the U.S. Department of
Energy's STAR project.

1 Introduction

In production high-performance cluster computing environments, batch jobs can fail
for many reasons: transient and permanent hardware failures; software configuration
errors; insufficient computing, storage, or network resources; incorrectly specified
application inputs or buggy application code. Simplistic job recovery policies (e.g.
blind restart) can lead to low quality of service and inefficient use of cluster resources.
To provide high throughput and high reliability, it is necessary to determine the cause
of task failure in enough detail to select and execute the appropriate job recovery.

While many job failures require human intervention for proper troubleshooting and
repair, a significant number can be delegated to autonomic [1] software.

We are developing a platform called the Agent Based High Availability (ABHA)
that provides autonomic recovery for batch jobs running on cluster and grid computing
environments. ABHA is being tested in the context of the U.S. Department of Energy's
STAR project [2] at Lawrence Berkeley National Laboratory (LBNL). We are now
evaluating it on production facilities there.

2 Architecture

A complete model for autonomic job recovery has to address four problems: 1)
recognition of job failure; 2) determination of appropriate failure recovery, which may

260 C. Earl et al.

Cluster Node

Agent

Agent

Agent

Agent
Cluster Node

Cluster Node

Resource
Manager
(e.g. LSF,
Condor)

Monitors (e.g.
ganglia,

tcpdump)

Services
(e.g. NFS)

F
A
C
I
L
I
T
A
T
O
R

R
E
A
S
O
N
E
R

require diagnosis to select between alternatives; 3) the ability to initiate recovery
actions; and 4) using that knowledge to avoid or mitigate the failure in the future.

ABHA uses a collection of distributed agents to address these problems. Agents
provide robustness, local monitoring and recovery with global communication, and
separation of concerns for creating new error management details.

Figure 1 depicts the core components of the system in a typical configuration.
Agents collect information about the system and jobs running on it and share that
information with other agents by producing events that are distributed by a centralized
Facilitator. Agents use this shared information to predict and diagnose job failures,
make job recovery recommendations, and autonomously perform job recovery.

Agents can be deployed on various nodes throughout the cluster as dictated by the
configuration of the site. For example, agents can gather information from and issue
commands to distributed resource managers (e.g. Condor [3] or LSF [4]), filter and
interpret information collected from other system monitors (e.g. Ganglia [5]), provide
detailed information from specific jobs, or collect information from services deployed
through the system (e.g. NFS).

ABHA deploys a centralized Reasoner (based on the Java Expert System Shell [6])
that interprets rules that are run against the events sent to the Facilitator. The behavior
of remote agents can also be specified using rules. ABHA provides C++, Java, and
Perl APIs for developing agents. The Facilitator is implemented using the Java
Message Service (JMS) API and can be configured to provide fail-over and persistent
event storage. A graphical user interface allows inspection of events and control of
agents.

3 An Example

One example provides an illustration of the functionality of ABHA and the kinds of
recovery issues that it can address. The STAR production cluster at LBNL [7]

Fig. 1. ABHA Architecture

ABHA: A Framework for Autonomic Job Recovery 261

maintains a clustered file system for storage of experimental data. Each node is
referred to as a disk vault. The typical STAR batch job will be assigned to run on one
of 344 compute nodes and will access data that is remotely mounted on one of the 65
disk vaults. If too many jobs try to read data at the same time, the disk vault goes into
a thrashing mode and only reboot can bring it back. A reboot can be avoided by
intervening when disk vault I/O reaches a critical value. An administrator can suspend
jobs accessing the overloaded vault, adjust their resource requirements, and shepherd
each job them the queue until the load on the vault reaches acceptable levels.

We developed and tested a solution to this problem on our local cluster. Rules
loaded by the Reasoner agent direct diagnosis and recovery. The main rule is
paraphrased below.

A ganglia agent filters information from the ganglia monitor, sending high_
diskvault_load when the load on one of the disk vault machines exceeds a
threshold.

The Reasoner agent then requests the tcpdump agent to determine which machine
consumes the most I/O bandwidth with respect to the vault. The tcpdump agent posts
this information as a max_dvio_consumer event.

The Reasoner then requests the lsf agent to determine the jobs running on the
offending host, and returns these in an lsf_job event. The rule then requests mount
information from local_node_monitor agent on the node on which the job is running.
The local_node_monitor agent returns this information in a job_mounts event. The
Reasoner then follows the THEN part of the rule: it suspends jobs running against the
disk vault, adjusts the priority of the offending job, and once the offending job has
finished, restarts remaining jobs, until the load on the disk vault returns to normal.

4 Remaining Work

We are evaluating on the PDSF production cluster. A Grid service implementation of
ABHA is also being developed for the STAR Grid project [7].

IF(high_diskvault_load ON ?dv AT ?T1)
 AND(max_dvio_consumer ?dv ?node ?T1)
 AND (lsf_job ?node ?job ?T1)
 AND (job_mounts ?job ?dv)
THEN
 (lsf_suspend (jobs_using_vault ?dv))
(restart ?job)
 (UNTIL(normal_diskvault_load ON ?dv)

 (lsf_restart (pick ?jobs)))

262 C. Earl et al.

References

1. Chess, D., Kephart, J.: The Vision of Autonomic Computing. IEEE Computer Magazine 1
(2003) 41-50.

2. STAR experiment website http://www.star.bnl.gov/.
3. Condor project website http://www.cs.wisc.edu/condor/.
4. Platform Computing LSF http://www.platform.com
5. Ganglia project website http://ganglia.sourceforge.net/.
6. JESS website at http://herzberg.ca.sandia.gov/jess
7. Parallel Distributed Systems Facility website http://www.nersc.gov/nusers/resources/PDSF/

	Introduction
	Architecture
	An Example
	Remaining Work
	References

