
Automated Validation of Service Configuration
on Network Devices

Sylvain Hallé, Rudy Deca, Omar Cherkaoui, and Roger Villemaire

Department of Computer Science
Université du Québec à Montréal

C.P. 8888, Succ. Centre-ville
Montréal (Canada) H3C 3P8

{halle,deca,cherkaoui.omar,villemaire.roger}@info.uqam.ca

Abstract. Due to the significant development of network services in
the past few years, their validation has become increasingly difficult.
The advent of novel approaches to the issue of validation is therefore
vital for keeping services manageable, safe, and reliable. We present a
model for the validation of service configurations on network devices.
A service configuration is modelled by a tree structure, and its proper-
ties are described by validation rules expressed in terms of these tree
elements. By using an existing logical formalism called TQL, we have
succeeded in expressing complex dependencies between parameters, and
in automatically checking these dependencies against real-world network
descriptions in feasible time.

Keywords: network service management, automated configuration val-
idation

Topic: policy-based management

1 Introduction

The recent years have seen significant development occurring in the domain of
network services. In parallel to the creation of new services spreading in in-
creasingly more diverse areas, the networks that support them have become
integrated, leading to an increased heterogeneity in topologies, technologies, pro-
tocols, and vendors.

Consequent to this booming, the validation of network services has become
increasingly difficult: existing validation solutions haven been struggling to keep
the pace but barely suffice anymore, and new solutions have been proposed, but
are partial. The advent of novel approaches to the issue of validation is therefore
vital for keeping services manageable, safe, and reliable.

Some partial validation solutions have been proposed in different areas. For
example, the authors in [2], [13] formally verify policy anomalies in distributed
firewall rules. [3] develops a set of formal constraints under which a given Virtual
Private Network is safe and properly working, but does not mention concrete
implementations of the presented approach.

J. Vicente and D. Hutchison (Eds.): MMNS 2004, LNCS 3271, pp. 176–188, 2004.
c© IFIP International Federation for Information Processing 2004

Automated Validation of Service Configuration on Network Devices 177

In this paper, we present a general-purpose model for the validation of in-
tegrity rules in service configurations on network devices. A service configuration
is modelled by a tree structure, and its properties are described by validation
rules expressed in terms of these tree elements. This allows efficient service vali-
dation on the managed network devices, minimises the effort, the errors and the
cost for maintenance, consistency checking, and other stages of the service life cy-
cle. Moreover, by using an existing logical tool called TQL [5], we have succeeded
in expressing complex dependencies between parameters, and in automatically
checking these dependencies against real-world configurations in feasible time.

In sect. 2, we give a brief overview of typical network service properties and
of their modelling in tree structures. Section 3 introduces the TQL tree logic and
shows how service properties become validation rules expressed in this formalism,
while sect. 4 presents the results of the validation of several configuration rules
related to the Virtual Private Network service on multiple devices. Section 5
concludes and indicates further directions of research.

2 Service Configuration Properties

A service usually requires underlying services or sub-services, such as network
connectivity, and has a life cycle starting from the customer’s demand and fol-
lowed by negotiation, provisioning, up to utilisation by the customer and man-
agement of the service. Many steps of this life cycle, such as provisioning, entail
the manipulation of configuration information in the devices involved in the ser-
vice offering. The configuration information consists of parameters that can be
created or removed and whose values can be changed according to a goal.

The configuration process is hierarchical. Several parameters that logically
belong together can be grouped together by means of configuration statements,
such as commands or menu windows with buttons and choices. Thus, several
parameters can be affected by means of a single command, and conversely, several
commands can compose a single feature or a service, in the same way that several
services can compose a higher-level service. Consequently, a provider of a higher
level service can be a customer of a lower level service.

2.1 Dependencies at Service Configuration Level

The parameters and components of the configuration affected by a service are in
specific and precise dependencies. All those dependencies must be studied and
captured by the management models, in order to provide effective solutions. We
will show some of those dependencies and a methodology for their modelling. For
each of the examples presented, we will deduce a configuration rule formalising
the dependencies.

Example 1: IP Addresses. The existence or the possible state of a parameter
may depend on another such parameter somewhere else in the configuration.

The simplest example of such dependency can be seen in an IP address fol-
lowing the Classless Inter-Domain Routing (CIDR) scheme [10], [16], whose two

178 Sylvain Hallé et al.

components, the value and the subnet mask, are linked by a simple relationship:
an address like 206.13.01.48/25, having a network prefix of 25 bits, must carry
a mask of at least 255.255.255.128, while the same address with a network pre-
fix of 27 bits must not have a subnet mask under 255.255.255.224.

From this example, we could deduce a simple rule ensuring the validity of all
IP addresses used in a given configuration:

Example Rule 1 The subnet mask of an IP address must be consistent
with its CIDR network prefix.

Example 2: Access Lists. Access lists show another example of a generic
dependency. Network devices use access lists to match the packets that pass
through an element interface and block or let them pass, according to packet
information. The configuration of such extended IP access lists has a variable
geometry: if the type of protocol used for packet matching is TCP or UDP, the
port information (operator, port number or a port number range) is manda-
tory. If the protocol used is different (e.g. ICMP), there is no port information
required.

From this example, we could deduce another rule relating to proper use of
access lists:

Example Rule 2 If the protocol used in an access list is TCP or UDP,
then this access list must provide port information.

Access lists illustrate yet another parameter relationship: once an access list
is created, an identifier is provided for it. This identifier must then be used to
attach the access list to a specific interface.

Example 3: Virtual Private Networks. More complex situations can be
encountered, in which the parameters of several devices supporting the same
service are interdependent. An example is provided by the configuration of a
Virtual Private Network (VPN) service [15], [17], [18].

A VPN is a private network constructed within a public network such as
a service provider’s network. A customer might have several sites, which are
contiguous parts of the network, dispersed throughout the Internet and would
like to link them together by a protected communication. The VPN ensures the
connectivity and privacy of the customer’s communications between sites.

The establishment and validation of VPN is a particularly interesting exam-
ple that has already spawned many books and papers. In particular, [3] develops
a set of formal constraints under which a given VPN is safe and properly working.
[6] also uses the VPN as an example to present a formal method of validation.

Some part of the connections and communications is realised between the
routers at the edge of the provider’s network, called provider edge or PE-routers,
and routers at the edge of the customer’s sites (customer edge routers or CE-
routers). Another part of the connections is made among the PE-routers of the
provider’s network.

Automated Validation of Service Configuration on Network Devices 179

One of the many implementations of the VPN is based on Multi-Protocol
Label Switching (MPLS), in which the connectivity and communications inside
the provider’s network are ensured by the Border Gateway Protocol (BGP)
processes. A simple way to realise it is by direct neighbour configuration.

Among other requirements of this method, an interface on each PE-router
(for example, Loopback0), must have its IP address publicised into the BGP
processes of all the other PE-routers’ configurations using the neighbor com-
mand [15]. If one of these IP addresses changes the connectivity is lost and the
VPN service functioning is jeopardised. Thus,

Example Rule 3 In a VPN, the IP address of the Loopback0 interface
of every PE-router must be declared as a neighbour in every other PE-
router.

Some of the dependencies might be specific to the vendor implementation
of the configuration interface. Such dependencies are of a low level and more
difficult to model, because of the diversity of the vendor solutions. For instance,
the configuration commands in Cisco’s IOS are different from those in Juniper’s
JunOS, not to mention the different versions of the same vendor’s commands.
In the following sections, we rather focus on generic dependencies.

2.2 Configuration Management Approaches

The International Telecommunications Union (ITU) defines a management mo-
del called TMN [12] based on the OSI management framework. Three logical
layers of this model are involved in network service management:

– the service-management layer (SML)
– the network-management layer (NML)
– the element-management layer (EML)

The service-management layer takes charge of the connections to the users
and the underlying connectivity between users and the provider (e.g. transmit-
ting a video image to the customer).

The network-management layer deals with the topology, the technology (IP,
ATM, FR, ...), the protocols (ISDN, BGP, OSP, RIP, ...) and the devices (num-
ber, type, and role) used in the network.

The element-management layer deals with the network elements, the con-
figuration parameters (bandwidth, packet size, error rate, IP addresses, routing
tables, access lists, etc.) and commands that describe or implement the service.

Network service management can be done by various means: text-based com-
mands, graphical user interfaces, menus, wizards. Routers and switches, like
other equipment working in IP networks, are mostly configured by means of
commands (around 90%, according to some estimates) running under an oper-
ating system, such as NetBSD, Cisco’s IOS, and Juniper’s JunOS.

In this case, configuration files contain sequences of text commands. Usually,
with some exceptions, the default information present in the routers and switches
is not recorded in configuration files, but only the alterations of this information.

180 Sylvain Hallé et al.

Configuration files are an important mean for service configuration on net-
work elements. The manipulation of the configuration files contributes to the
quick and easy configuring of the routers and switches. Given the important
role played by the commands in the service configuration on equipments, it is
important to study their properties and particularities in order to draw network
element management solutions.

2.3 Modelling the Service Configurations

In this section, we describe how to model service configurations. All properties
of a given configuration are described by attribute-value pairs. However, these
pairs are organised in a hierarchy that will be represented by a tree structure.

The tree representation is a natural choice, since it reflects dependencies
among components, such as the parameters, statements and features. Moreover,
trees are simple and handy for defining and performing various operations re-
quired by service management tasks. We will see that trees can also be put into
direct correspondence with XML files for a better and easier manipulation.

Tree Structures. The basic element of our tree structure is the configuration
node which implements the concept of attribute-value pairs. A configuration
node is in itself a small tree having a fixed shape. Its root is labelled node, and
it has three children:

– name, which itself has a single child of variable label, the name of the attribute
– value, which also has a single child of variable label, the value of the attribute
– child, which can have as many other node structures as desired

Thus, if we are to speak of the IP address of a given component, we use the tree
depicted in fig. 1.

Fig. 1. A simple configuration node

Were we to consider separately the value and the subnet mask of a given
address, we could model it in the way represented by fig. 2.

As one can see, our model puts the parameters as children configuration
nodes. This approach enables to model simple dependencies among service con-
figuration components, in which the existence of a component is conditioned
by the existence of another. These dependencies are modelled by the ancestor-
descendent relationship.

Automated Validation of Service Configuration on Network Devices 181

Fig. 2. A configuration node with two children containing additional attributes

Fig. 3. Partial configuration tree structure for the access list example

To illustrate this concept, let us examine fig. 3, which represents a sample
tree for the access list presented in example 2 of section 2.1. In this tree, if the
protocol parameter of an extended IP access list has the value TCP or UDP, it
is the parent or ancestor node of the associated port node. The standard IP
access lists do not have the protocol parameter and thus cannot have the port
either. Under some systems, the access list number, stored at the root node of
the access list tree, enables us to tell the difference between the two types. If
the number is comprised between 1 and 99, the access list is a standard one; if
the number is comprised between 100 and 199, the access list is of the extended
type.

Taking the concept of hierarchy further, we illustrate in fig. 4 by a larger
tree the last example in section 2.1. Each router has a device name, an interface
Loopback0 whose address is defined, and some number of neighbor attributes
declaring the IP addresses of the neighbouring PE-routers. Figure 4 shows a
portion of a tree for a single device named router_1.

182 Sylvain Hallé et al.

Fig. 4. Partial configuration tree structure for the VPN example

All our Example Rules given in sect. 2 can be translated into the new termi-
nology of trees. Thus, Example Rule 3 becomes the following Tree Rule:

Tree Rule 3 The value of the IP address of the interface Loopback0
in the PE router_i is equal to the IP address value of a neighbour
component configured under the BGP process of any other PE router_j.

This “tree-form” acts an an intermediate step between the English-like rules
of sect. 2.1 and the formal syntax that will be introduced in sect. 3. To handle
multiple devices in a same description, we can top all individual trees by a global
common node, called network for instance.

XML Schema Trees. XML (eXtensible Markup Language) is a universal for-
mat for structured documents over the web. XML is a widely used standard
developed and maintained by the World Wide Web Consortium (W3C). Over
the years, XML has gained in popularity and is becoming a standard way of
representing virtually any data.

There is a straightforward correspondence between labelled trees like the
ones presented in sect. 2.3 and XML files. Any label in such a tree becomes an
XML “tag”, and all children of that label are enclosed between its opening and
closing tag. Hence, one configuration node produces many XML tags. The small
tree of fig. 1 can be easily translated into this piece of XML code:

Automated Validation of Service Configuration on Network Devices 183

<node>
<name>ip address</name>
<value>10.0.0.0</value>
<child></child>

</node>

We do not include the XML versions of the other trees shown previously, as
the translation is direct.

XML is a natural choice of building and manipulating trees, because of its
flexibility and the availability of a wide range of features and tools handling
XML files.

As shown in the first example of the previous paragraph, some complex de-
pendencies cannot be seized by sole parent-children relationship. We hence need
to introduce some kind of formalism and express rules applying to the tree ele-
ments (nodes, branches, values, root, etc.). This is what we do in the following
section.

3 Modelling the Service Configuration Rules

With configurations described as trees, in order to verify configuration rules, we
need a formalism to express properties of trees. Many such formalisms have been
developed in recent years [1], [4], [9], [11], [14], [21]. In particular, [5] introduced
a logic called TQL (Tree Query Logic), which supports both property and query
descriptions. Hence one can not only check if a property is true or false, but also
extract a specific subtree that makes that property true or false.

We show in this section how TQL can be used to perform validation tasks
on the XML network descriptions modelled in sect. 2.

3.1 A Formalism for Expressing Configuration Rules

Simply put, TQL is a description language for trees. We say that a tree t matches
a given TQL expression e and we write t |= e when e is true when it refers to t.
We also say that e describes t.

The two main constructs in this logic are the edge ([]) and the composition
(|). Any TQL expression enclosed within square brackets is meant to describe
the subtree of a given node. For example, the expression root[child] indicates
that the root of the current tree is labelled root, and that this root has only one
child, labelled child. The composition operator joins two tree roots; hence, the
expression node[name | value] describes a tree whose root is node, and whose two
children are the nodes name and value. These operators can be nested at need;
thus, the tree depicted in fig. 1 is described by the following TQL expression:

node[name[ip address] | value[10.0.0.0] | child]

Edge and composition alone can describe any single tree. To express proper-
ties about whole classes of trees, other operators are added to the syntax, whose
intuitive meaning is given here:

184 Sylvain Hallé et al.

– ¬A (negation): if a tree does not match A, then it matches ¬ A
– A ∨ B (disjunction): if a tree matches A ∨ B, then either it matches A or it

matches B (or both)
– A ∧ B (conjunction): if a tree matches A ∧ B, then it must match both A

and B
– . (existence of a child): .x matches any tree whose root has a child labelled x

These operators allow us to express, for example, the fact that a given access
list has a port node if its protocol is TCP or UDP:

TQL Query 2
node[name[protocol] | value[TCP ∨ UDP] | child[

.node.child.node[.name[port]]]]] ∨

It actually tells that the root node of the tree is labelled node, whose name branch
leads to protocol, whose value branch leads to either TCP or UDP and whose
child branch spawns another node leading to port. If not, then the root node
has a protocol name different from TCP and UDP.

A similar argument allows us to check that the tree shown in fig. 5 also
verifies the property.

Fig. 5. Another access list tree with no port information

Furthermore, one can extract the protocol name in fig. 3 with the query

node[.value[$P]]

expressing the fact that the root node has a child labelled value having its child
label assigned to variable $P. TQL rules are instantiated in a Prolog-like fashion.

Let us also mention that TQL contains a fix-point operator which can be
used to recursively express properties at any depth in a tree [4], [5]. This makes
TQL suitable for any configuration property.

Automated Validation of Service Configuration on Network Devices 185

For more information related to TQL and its syntax, the reader is referred
to [4] and [5].

3.2 Applying TQL to Validate Service Configuration File Properties

Each of the Tree Rules to be checked on a given description can be translated
into TQL queries by using the operators described above. For example, the VPN
Tree Rule 3 now becomes:

TQL Query 3
network[

.node[.name[device name] | .value[$N] | .child.node[
.name[interface type] | .value[loopback] | .child.node[

.name[interface number] | .value[0] | .child.node[
.name[ip address] .value[$A]]]]] ∧

.node[.name[device name] | .value[¬ $N] ∧¬ .child.node[
.name[bgp] | .value[100] | .child.node[

.name[neighbor] | .child.node[
.name[ip address] | .value[$A]]]]]]

The first half of the query fetches all tuples of values of device_name and
ip_address for the Loopback0 interface and binds them to the variables $N and
$A. From all these tuples, the second half asks TQL to keep only those for which
there exists a device different than $N where $A is not listed as a neighbour. The
query returns all addresses of interfaces Loopback0 not declared as a neighbour
in at least one other device. Therefore, if an inconsistency is detected, the set of
faulty parameters is returned, thus helping to pinpoint the location of the error
in the configuration and eventually correct it. On the other hand, an empty
result indicates the property is verified for all addresses and all devices.

The structure and syntax of these rules is straightforward, but cumbersome.
However, the advantage of TQL over other tree logics is the availability of a
software tool that automatically verifies TQL queries on XML files. This tool is
freely available from TQL’s site [20].

The TQL tool takes as input an XML file containing the tree we want to
check and TQL properties to be verified on that tree. The program performs the
verification, and for each of the queries, outputs the portions of the tree that
match the given property, if any.

Moreover, once a TQL property is built to check a given rule, it does not
need any modification to be checked against any schema tree following the same
conventions.

4 Experimental Results

We processed real world XML network descriptions with the following 5 sample
properties modelling the MPLS VPN service. Remark that property P4 is the
VPN rule we have used as an example throughout this paper.

186 Sylvain Hallé et al.

P1 If two sites belong to a single VPN, they must have similar route distin-
guisher and their mutually imported and exported route-targets must have
corresponding numbers.

P2 The VRF name specified for the PE-CE connectivity and the VRF name
configured on the PE interface for the CE link must be consistent.

P3 The VRF name used for the VPN connection to the customer site must be
configured on the PE router.

P4 The interface of a PE router that is used by the BGP process for PE con-
nectivity, must be defined as BGP process neighbor in all of the other PE
routers of the provider.

P5 The address family vpnv4 must activate and configure all of the BGP neigh-
bors for carrying only VPN IPv4 prefixes and advertising the extended com-
munity attribute.

All these properties were translated into tree rules, and then into TQL queries
in the same fashion as described in sect. 3. These queries were then verified
sample XML schema trees of a network composed of 2 to 20 routers. These
sample schema trees were automatically generated by a parameterisable script,
and then directly fed to TQL. For some of the descriptions we used, one or
many of the 5 rules were false. Since rules were processed separately, it was
always possible to know which rule failed. The results, summarised in table 1,
suggest a validation time roughly polynomial in the size of the configuration to
check.

Table 1. Results of TQL query validation for 5 VPN rules

Checking time (s)
Routers Config. nodes XML tags P1 P2 P3 P4 P5

2 56 413 0,04 0,04 0,06 0,06 0,04
4 224 1639 0,06 0,12 0,09 0,08 0,12
6 504 3681 0,09 0,24 0,18 0,13 0,20
8 896 6539 0,12 0,38 0,28 0,19 0,32
10 1400 10213 0,15 0,54 0,41 0,29 0,48
20 5600 40823 0,52 2,17 1,52 0,96 1,86

All results have been obtained on an AMD Athlon 1400+ system running
Windows XP. As one can see from the previous results, validation time for all
rules is quite reasonable and does not exceed 10 seconds for the largest data set.
In all these sets, TQL correctly validated the rules that were actually true, and
spotted the ones that did not apply.

5 Conclusions

We have shown how network configuration can be modelled first by using tree
structures, and then by standard XML files. By using an existing logical formal-
ism called TQL, we have succeeded in expressing complex dependencies between

Automated Validation of Service Configuration on Network Devices 187

parameters, and in automatically checking these dependencies against real-world
network descriptions in feasible time.

The results obtained suggest that this framework could be extended to model
all kinds of dependencies in network descriptions for different classes of services.
A subset of TQL could even be implemented in existing network management
tools to perform background validation tasks and provide insightful messages to
an administrator. The ability of TQL to formally detect and prove tautologies
and contradictions could also be used to eventually discover conflicting rule sets.

The scalability of our approach over networks of hundreds or thousands of
devices must also be assessed. More experiments have to be done to ensure that
validation time of larger descriptions remains in practical bounds.

Further work towards a standardisation of descriptions of service configura-
tions is also needed. The Common Information Model (CIM) [8] and Directory
Enabled Networking (DEN) [19] initiatives developed by the Distributed Man-
agement Task Force (DTMF) [7] are two examples of an XML modelling of all
components of network activity that opens the way to a normalisation of their
behaviour.

References

1. Alechina, N., Demri, S., De Rijke M.: A modal perspective on path constraints.
Journal of Logic and Computation, 13(6) (2003) 939–956.

2. Al-Shaer E., Hamed H.: Discovery of Policy Anomalies in Distributed Firewalls.
Proc. IEEE INFOCOM (2004)

3. Bush, R., Griffin, T.: Integrity for Virtual Private Routed Networks. Proc. IEEE
INFOCOM (2003)

4. Cardelli, L.: Describing semistructured data. SIGMOD Record, 30(4) (2001) 80–85
5. Cardelli, L., Ghelli, G.: TQL: A query language for semistructured data based on

the ambient logic. Mathematical Structures in Computer Science (to appear).
6. Deca, R., Cherkaoui, O., Puche, D.: A Validation Solution for Network Configura-

tion. Communications Networks and Services Research Conference (CNSR 2004),
Fredericton, N.B. (2004)

7. Distributed Management Task Force. http://www.dmtf.org/
8. DSP111, DMTF white paper, Common Information Model core model, version 2.4,

August 30, 2000.
9. Fournet C., Gonthier G., Lévy J.-J., Maranget, L., Rémy, D.: A Calculus of Mobile

Agents. Proc. CONCUR’96 (1996)
10. Fuller, V., Li, T., Yu, J., Varadhan, K.: Classless Inter-Domain Routing (CIDR):

an Address Assignment and Aggregation Strategy. RFC 1519 (1993)
11. Gottlob G., Koch, C.: Monadic queries over tree-structured data. LICS’02 (2002)

189–202
12. ITU Recommendation M.3000, Overview of TMN Recommendations. February

2000.
13. Mayer, A., Wool, A., Ziskind, E.: Fang: A Firewall Analysis Engine. Proc. IEEE

Symposium on Security and Privacy (2000)
14. Miklau G., Suciu, D.: Containment and equivalence for an Xpath fragment. Proc.

PODS 2002 (2002) 65–76
15. Pepelnjak, I., Guichard, J.: MPLS VPN Architectures, Cisco Press (2001)

188 Sylvain Hallé et al.

16. Rekhter, Y., Li, T.: An Architecture for IP Address Allocation with CIDR. RFC
1518 (1993)

17. Rosen, E., Rekhter, Y.: BGP/MPLS VPNs. RFC 2547 (1999)
18. Scott, C., Wolfe, P. Erwin, M.: Virtual Private Networks, O’Reilly (1998)
19. Strassner J., Baker F.: Directory Enabled Networks, Macmillan Technical Pub-

lishing (1999)
20. TQL web site, Università di Pisa. http://tql.di.unipi.it/tql/
21. Vitek, J., Castagna, G.: Seal: a framework for secure mobile computations. Internet

Programming Languages, LNCS 1686 (1999) 44–77

	1 Introduction
	2 Service Configuration Properties
	2.1 Dependencies at Service Configuration Level
	2.2 Configuration Management Approaches
	2.3 Modelling the Service Configurations

	3 Modelling the Service Configuration Rules
	3.1 A Formalism for Expressing Configuration Rules
	3.2 Applying TQL to Validate Service Configuration File Properties

	4 Experimental Results
	5 Conclusions
	References

