Skip to main content

Probabilistic Inference for Network Management

  • Conference paper
Universal Multiservice Networks (ECUMN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3262))

Included in the following conference series:

Abstract

As networks grow in size, heterogeneity, and complexity of applications and network services, an efficient network management system needs to work effectively even in face of incomplete management information, uncertain situations and dynamic changes. We use Bayesian networks to model the network management and consider the probabilistic backward inference between the managed entities, which can track the strongest causes and trace the strongest routes between particular effects and its causes. This is the foundation for further intelligent decision of management in networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, C., Schwartz, M.: Fault detection with multiple observers. IEEE/ACM transactions on Networking 1, 48–55 (1993)

    Article  Google Scholar 

  2. Frontini, M., Griffin, J., Towers, S.: A knowledge-based system for fault localization in wide area networks. In: Integrated Network Management, II, pp. 519–530. North-Holland, Amsterdam (1990)

    Google Scholar 

  3. Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust event correlation. IEEE Communications Magazine 34(5), 82–90 (1996)

    Article  Google Scholar 

  4. Lewis, L.: A case-based reasoning approach to the resolution of faults in communication networks. In: Integrated Network Management, III, pp. 671–682. Elsevier Science Publishers B.V, Amsterdam (1993)

    Google Scholar 

  5. Deng, R.H., Lazar, A.A., Wang, W.: A probabilistic Approach to Fault Diagnosis in Linear Lightwave Networks. IEEE Journal on Selected Areas in Communications 11(9), 1438–1448 (1993)

    Article  Google Scholar 

  6. Steinder, M., Sethi, A.S.: Non-deterministic diagnosis of end-to-end service failures in a multi-layer communication system. In: Proc. of ICCCN, Scottsdale, AR, pp. 374-379 (2001)

    Google Scholar 

  7. The International Engineering Consortium. Highly available embedded computer platforms become reality , http://www.iec.org/online/tutorials/acrobat/haembed.pdf

  8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  9. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Systems. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  10. Nikovski, D.: Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Transactions on Knowledge and Data Engineering 12(4), 509–516 (2000)

    Article  Google Scholar 

  11. Basye, K., Dean, T., Vitter, J.S.: Coping with Uncertainty in Map Learning. Machine Learning 29(1), 65–88 (1997)

    Article  MATH  Google Scholar 

  12. Charniak, E., Goldman, R.P.: A Semantics for Probabilistic Quantifier-Free First- Order Languages, with Particular Application to Story Understanding. In: Proceedings of IJCAI 1989, pp. 1074–1079. Morgan-Kaufmann, San Francisco (1989)

    Google Scholar 

  13. Katzela, I., Schwarz, M.: Schemes for fault identification in communication networks. IEEE Transactions on Networking 3(6), 733–764 (1995)

    Article  Google Scholar 

  14. Klinger, S., Yemini, S., Yemini, Y., Ohsie, D., Stolfo, S.: A coding approach to event correlation. In:Proceedings of the fourth international symposium on Integrated network management IV, pp.266-277 (January 1995)

    Google Scholar 

  15. Heckerman, D., Wellman, M.P.: Bayesian networks. Communications of the ACM 38(3), 27–30 (1995)

    Article  Google Scholar 

  16. Keller, U., Blumenthal, G.: Kar. Classification and Computation of Dependencies for Distributed Management. In: Pro. of 5th IEEE Symposium on Computers and Communications. Antibes-Juan-les-Pins, France (July 2000)

    Google Scholar 

  17. Gupta, M., Neogi, A., Agarwal, M.K., Kar, G.: Discovering Dynamic Dependencies in Enterprise Environments for Problem Determination. In: Brunner, M., Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 221–233. Springer, Heidelberg (2003) ISBN 3-540-20314-1

    Chapter  Google Scholar 

  18. Pearl, J.: A constraint-propagation approach to probabilistic reasoning. Uncertainty in Artificial Intelligence. North-Holland, Amsterdam, pp.357-369 (1986)

    Google Scholar 

  19. Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods. Tech. Rep. CRG-TR93-1, University of Toronto (1993)

    Google Scholar 

  20. Cooper, G.: Computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Suermondt, H.J., Cooper, G.F.: Probabilistic inference in multiply connected belief network using loop cutsets. International Journal of Approximate Reasoning 4, 283–306 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, C.: Bayesian Belief Network Simulation. Tech-Reprort, Department of Computer Science, Florida State University (2003)

    Google Scholar 

  23. Weigend, S., Gershenfeld, N.A.: Time Series Prediction. Addison-Wesley, Reading (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, J., Krämer, B.J., Bai, Y., Chen, H. (2004). Probabilistic Inference for Network Management. In: Freire, M.M., Chemouil, P., Lorenz, P., Gravey, A. (eds) Universal Multiservice Networks. ECUMN 2004. Lecture Notes in Computer Science, vol 3262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30197-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30197-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23551-4

  • Online ISBN: 978-3-540-30197-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics