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Abstract. The paper introduces the notion of freely completable par-
tial solutions to characterize constraint satisfaction problems that have
components which are relatively easy to solve and are only loosely con-
nected to the remaining parts of the problem. Discovering such partial
solutions during the solution process can result in strongly pruned search
trees. We give a general definition of freely completable partial solutions,
and then apply it to resource-constrained project scheduling. In this do-
main, we suggest a heuristic algorithm that is able to construct freely
completable partial schedules. The method – together with symmetry
breaking applied before search – has been successfully tested on real-life
resource-constrained project scheduling problems containing up to 2000
tasks.

1 Introduction

In this paper we address the problem of exploiting certain structural properties
of constraint satisfaction problems in the course of the solution process. We
suggest a method that looks for such a binding of a subset of the variables,
which does not constrain the domain of the remaining variables in any way. This
kind of bindings is called a freely completable partial solution.

Broadly speaking, freely completable partial solutions are traits of such con-
straint satisfaction problems (CSPs) that have some components which are rel-
atively easy to solve and are only loosely connected to the remaining parts of
the problem. Once detected, these partial solutions can be exploited well during
the search for solutions: decisions in the easy-to-solve component of the problem
can be eliminated, and search can be focused to making the relevant decisions
only.

With pruning the search tree, the method may exclude even all but one
solutions. In this way, it is closely related to symmetry breaking, except that
our approach treats all solutions equivalent and does not necessitate the explicit
declaration of symmetry functions. It can be applied in satisfiability problems
and optimization problems which are solved as a series of satisfiability problems.

M. Wallace (Ed.): CP 2004, LNCS 3258, pp. 332–346, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Completable Partial Solutions in Constraint Programming 333

Our particular motivation was to improve the efficiency of constraint-based
scheduling methods. By now, constraint programming provides attractive rep-
resentation and solution methods for solving complex, real-life scheduling prob-
lems. However, even the most advanced systems are often unable to solve large
problems – which may include an order of magnitude more tasks than typi-
cal benchmarks – to an acceptable range of the optimum. Industrial scheduling
problems require rich and large-size models, but, at the same time, they can be
simple in the sense that they have a loosely connected structure of easy and hard
sub-problems. In a real factory, projects visit resources in sequences more or less
determined by the manufacturing technology applied. There are product fami-
lies, members of which are produced in a similar way, using common resources
in the same order, while, on the other way around, different product families
often use basically different (though not disjoint) sets of resources. Typically,
there are many non-bottleneck resources and non-critical projects as well. Some
of these properties (e.g., symmetries) can be detected even at the time of model
building, but the problem structure remains hidden and can be discovered only
at solution time.

In what follows we first discuss equivalence and consistency preserving trans-
formations of CSPs. After summing up related works, a general definition of
freely completable partial solutions is given in Sect. 3. Then we shortly present
our approach to solving resource-constrained scheduling problems, give a
problem-specific definition of freely completable partial schedules and propose
a heuristic algorithm to construct partial solutions with such a property. Next
we describe how we break symmetries in scheduling problems. Sect. 6. evaluates
computational experiments and gives a comparative analysis of constraint-based
scheduling algorithms that run on industrial, large-size problem instances with-
out and with the suggested extensions. Finally, conclusions are drawn.

2 Transformations of Constraint Problems

Let there be given a constraint satisfaction problem Π as follows. X = {xi}
denotes a finite set of variables. Each variable xi can take a value from its domain
Di. There is a set of constraints C defined on the variables. The set of variables
present in the N -ary constraint c(xi1 , . . . , xiN ) ∈ C, or briefly c, is denoted by
Xc = {xi1 , . . . , xiN }. The solution of a constraint program is a binding S of the
variables, i.e., ∀xi ∈ X : xi = vS

i ∈ Di such that all the constraints are satisfied,
∀c ∈ C : c(vS

i1 , . . . , v
S
iN

) = true.
The solution process of a constraint satisfaction problem generally consists

of a tree search. Constraint programming earns its efficiency from the transfor-
mations of the constraint problem, such as domain reductions and addition of
inferred constraints, performed within the search nodes.

2.1 Preserving Equivalence vs. Consistency

According to the definitions in [1], a transformation Π ⇒ Π ′ is called equivalence
preserving if for every binding S of the variables, S is a solution of Π iff it is
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also a solution of Π ′. For example, constraint propagation and shaving preserve
equivalence.

However, a wider set of transformations, i.e., the so-called consistency pre-
serving transformations are eligible to solve problems when one has to decide
only whether Π has a solution or not. A transformation Π ⇒ Π ′ is defined to
be consistency preserving, if it holds that Π ′ has a solution iff Π has a solution.

Current general purpose constraint solvers perform equivalence preserving
transformations. The reason for that is rooted in their modular structure. Local
propagation algorithms are attached to individual constraints, hence do not have
a view of the entire model. They remove only such values from the variables’ do-
mains that cannot be part of any solution because violate the given constraint. In
contrast, transformations which do not preserve equivalence, remove also values
which can participate in some of the solutions. Without loosing the chance of
finding a solution (or proving infeasibility), this is possible only with an overall,
global view of the model.

2.2 Related Work

Recently, several efforts have been made to explore consistency preserving tech-
niques. Typical transformations which preserve consistency, but do not retain
equivalence, are the applications of symmetry breaking techniques and dominance
rules.

In symmetry breaking two basic approaches compete. The first adds symme-
try breaking constraints to the model before search, see e.g., [9]. For instance,
row and column symmetries in matrix models can be eliminated by lexicographi-
cal ordering constraints. Other methods, such as the Symmetry Breaking During
Search [15], Symmetry Breaking via Dominance Detection [13], or the Symmetry
Excluding Search [2] algorithms, prune symmetric branches of the search tree
during search. All of these general frameworks require an explicit declaration of
the symmetries in the form of symmetry functions or a dominance checker.

In constraint-based scheduling, it is a common technique to apply dominance
rules to prune the search tree. A dominance rule defines a property that must
be satisfied at least by one of the optimal solutions. Hence, also the application
of a dominance rule can be regarded as a transformation that preserves the
consistency of the original problem. E.g., in the field of resource constrained
project scheduling, two similar dominance rules are suggested in [3, 11] that
bind the start time of a task to the earliest possible value if its predecessors are
already processed and the given resource is not required by any other task at
that time. Note that this assignment can also be seen as a freely completable
solution. A dominance rule to decompose the scheduling problem over time is
described in [3]. More complex – and more expensive – dominance rules are
discussed by [12]. Several dominance rules as well as rules for the insertion of
redundant precedence constraints are proposed for the problem of minimizing
the number of late jobs on a single machine, see [5].

Early solution synthesis techniques of constraint solving can be regarded as
precursors of our proposed method [20]. For example, [14] presents a synthe-
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sis algorithm that incrementally builds lattices representing partial solutions for
one, two, etc. variables, until a complete solution is found. However, synthesis
methods were aimed at finding complete solutions of the problem by themselves
whereas we are content with constructing partial solutions that are freely com-
pletable.

A basically different approach to exploiting problem structure is by using
branching strategies which identify and resolve the most critical subproblems
in a CSP. In [7], various search heuristics are presented that extract informa-
tion from the constraint-based model of job-shop scheduling problems (hence,
they are referred to as textures) to drive the search heuristic. Similar, so-called
profile-based analysis methods are suggested in [8] that are tailored to cumula-
tive resource models. Alternatively, a clique-based approach is proposed by [18]
to find those subsets of connected activities whose resource requirements can
produce a conflict. The above approaches are in common that they point out –
resembling the decision method of human schedulers – the most critical resources
and/or activities time and again during the solution process.

3 Freely Completable Partial Solutions

In what follows we suggest a framework which performs consistency preserv-
ing transformations on structured constraint satisfaction problems by binding
a subset of the variables. This binding is selected so that it does not constrain
in any way the domains of the remaining variables. We call this kind of partial
solutions freely completable, and characterize them formally as follows.

A partial solution PS is a binding of a subset XPS ⊆ X of the variables,
∀xi ∈ XPS : xi = vPS

i . We define PS freely completable, iff for each constraint
c ∈ C:

– If Xc ⊆ XPS, then c(vPS
i1

, . . . , vPS
iN

) = true, i.e., c is satisfied.
– If Xc � XPS ∧ Xc ∩ XPS �= ∅, then let D′

ik
= {vPS

ik
} for xik

∈ XPS ,
and D′

ik
= Dik

for xik
/∈ XPS . Then, ∀(ui1 , . . . , uiN ) ∈ D′

i1
× . . . × D′

iN
:

c(ui1 , . . . , uiN ) = true. Note that this means that all the possible bindings
of the variables not included in PS lead to the satisfaction of c.

– If Xc ∩ XPS = ∅, then we make no restrictions.

Proposition 1: If PS is a freely completable partial solution, then binding the
variables xi ∈ XPS to the values vPS

i , respectively, is a consistency preserving
transformation.

Proof: Suppose that there exists a solution S of the constraint program. Then,
the preconditions in the above definition prescribe that the binding xi ∈ XPS :
xi = vPS

i , xi /∈ XPS : xi = vS
i is also solution, because every constraint is

satisfied in it. On the other hand, it is trivial that any solution of the transformed
problem is a solution of the original problem, too. �

Note that whether a partial solution is freely completable or not, depends
on all the constraints present in the model. In case of an optimization problem,
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this includes the constraints posted on the objective value as well. Thus, this
transformation can not be applied e.g., within a branch and bound search, where
such constraints are added during the search process.

A freely completable partial solution PS, apart from the trivial XPS = ∅
case, does not necessary exist for constraint satisfaction problems, or it can be
difficult to find. Notwithstanding, we claim that in structured, practical prob-
lems, fast and simple heuristics are often capable to generate such a PS. In what
follows, this will be demonstrated for the case of constraint-based scheduling.

4 An Application in Constraint-Based Scheduling

We applied the above framework to solve resource constrained project scheduling
problems. For that purpose, a commercial constraint-based scheduler [16] was
extended by a heuristic algorithm for finding freely completable partial solutions
during the search process. In addition, potential symmetries of similar projects
were excluded by adding symmetry breaking constraints before search.

4.1 Problem Statement and Solution Approach

The scheduling problems are defined as follows. There is a set of tasks T to be
processed on a set of cumulative resources R. Capacity of the resource r ∈ R is
denoted by q(r) ∈ Z+. Each task t ∈ T has a fixed duration d(t) and requires
one unit of resource r(t) during the whole length of its execution, without pre-
emption. Tasks can be arbitrarily connected by end-to-start and start-to-start
precedence constraints. These will be denoted by (t1 → t2) and (t1 ��� t2),
respectively, and determine a directed acyclic graph of the tasks together. The
objective is to find start times start(t) for the tasks such that all the prece-
dence and resource capacity constraints are observed and the makespan, i.e., the
maximum of the tasks’ end times, end(t) = start(t) + d(t) is minimal.

We solve this constrained optimization problem as a series of satisfiability
problems in the course of a dichotomic search. In successive search runs, the
feasibility of the problem is checked for different trial values of the makespan.
If UB is the smallest value of the makespan for which a solution is known and
LB is the lowest value for which infeasibility has not been proven, then the trial
value 
(UB + LB)/2� is probed next. Then, depending on the outcome of the
trial, either the value of UB or LB is updated. This step is iterated until the
time limit is hit or UB = LB is reached, which means that an optimal solution
has been found.

Within each search run, the initial time window of each task t ∈ T , limited
by its earliest start time est(t) and latest finish time lft(t), equals the interval
from time 0 to the trial value of the makespan. In the constraint-based repre-
sentation of the problem, one variable start(t) stands for the start time of each
task t ∈ T . The initial domain of start(t) is the interval [est(t), lf t(t) − d(t)].
These domains are later tightened by the propagators of the precedence and
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resource capacity constraints. For propagating precedence constraints, an arc-B-
consistency algorithm, while for resource capacity constraints the edge-finding
algorithm is applied [4].

During the search, we build schedules chronologically using the so-called
settimes strategy [16]. This relies on the LFT priority rule [10], which works as
follows. It selects the earliest time instant τ for which there exists a non-empty
set Tτ ⊆ T of unscheduled tasks that can be started at time τ . A task t ∈ T
belongs to Tτ iff all its end-to-start predecessors have ended and all its start-to-
start predecessors have started by τ , and there is at least one unit of resource
r(t) free in the interval [τ, τ +d(t)]. From Tτ , the task t∗ with the smallest latest
finish time lft(t∗) is selected. The settimes branching algorithm then generates
two sons of the current search node, according to the decisions whether start(t∗)
is bound to est(t∗), or t∗ is postponed.

4.2 Freely Completable Partial Schedules

A partial solution PS of a scheduling problem, i.e., a partial schedule, is a bind-
ing of the start time variables start(t) of a subset of the tasks, which will be
denoted by T PS ⊆ T . According to the previous definitions, PS is called freely
completable, if the following conditions hold for each constraint of the model.

For end-to-start precedence constraints c : (t1 → t2),

– t1, t2 ∈ T PS and end(t1) ≤ start(t2), i.e., c is satisfied, or
– t1 ∈ T PS, t2 /∈ T PS and end(t1) ≤ est(t2), i.e., c is satisfied irrespective of

the value of start(t2), or
– t1 /∈ T PS, t2 ∈ T PS and lft(t1) ≤ start(t2), i.e., c is satisfied irrespective of

the value of start(t1), or
– t1, t2 /∈ T PS, i.e., PS does not make any commitments on the start times of

t1 and t2.

This definition can be extended to start-to-start precedence constraints c :
(t1 ��� t2) likewise:

– t1, t2 ∈ T PS and start(t1) ≤ start(t2), or
– t1 ∈ T PS, t2 /∈ T PS and start(t1) ≤ est(t2), or
– t1 /∈ T PS, t2 ∈ T PS and lft(t1) − d(t1) ≤ start(t2), or
– t1, t2 /∈ T PS.

To check resource capacity constraints, we define M+
r,τ as the set of tasks

t ∈ T PS which are under execution at time τ on resource r, while M−
r,τ as the

set of tasks t /∈ T PS which might be under execution at the same time:

M+
r,τ = {t|t ∈ T PS ∧ r(t) = r ∧ (start(t) ≤ τ ≤ end(t))}

M−
r,τ = {t|t /∈ T PS ∧ r(t) = r ∧ (est(t) ≤ τ ≤ lft(t))}
Now, one of the followings must hold for every resource r ∈ R and for every

time unit τ :

– |M+
r,τ | + |M−

r,τ | ≤ q(r), i.e., the constraint is satisfied at time τ irrespective
of how PS will be complemented to a complete schedule, or

– M+
r,τ = ∅, i.e., PS does not make any commitment on r at time τ .
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4.3 A Heuristic Algorithm

We applied the following heuristic algorithm to construct freely completable
partial schedules. The algorithm is run once in each search node, with actual
task time windows drawn from the constraint solver.

The method is based on the LFT priority rule-based scheduling algorithm,
which also serves as the origin of the branching strategy. It was modified so
that it generates freely completable partial schedules when it is unable to find
a consistent complete schedule. The algorithm assigns start times to tasks in a
chronological order, according to the priority rule, and adds the processed tasks
to T PS.

1 PROCEDURE FindAnyCaseConsistentPS()

2 % Let U be the set of tasks not yet scheduled.

3 U := {t|t ∈ T : start(t) is not bound}
4 WHILE (U �= ∅)
5 Choose a task t ∈ U and a start time τ using the LFT rule;

6 Remove t from U;

7 IF τ + d(t) ≤ lft(t) THEN

8 start(t) := τ;
9 Add t to T PS

10 ELSE

11 FailOnTask(t);

12 PROCEDURE FailOnTask(t)

13 IF t ∈ T PS THEN

14 Remove t from T PS;

15 FORALL task t′ ∈ T PS : (t′ → t) ∈ C
16 IF end(t′) > est(t) THEN

17 FailOnTask(t′);
18 FORALL task t′ ∈ T PS : (t′ ��� t) ∈ C
19 IF start(t′) > est(t) THEN

20 FailOnTask(t′);
21 FORALL task t′ ∈ T PS : r(t′) = r(t)
22 % Let I be the time interval in which t and t′ can be

23 % processed concurrently.

24 I := [start(t′), end(t′)] ∩ [est(t), lft(t)];
25 IF ∃τ ∈ I : |M+

r(t),τ | + |M−
r(t),τ | > q(r(t)) THEN

26 FailOnTask(t′);

Fig. 1. The heuristic algorithm for constructing freely completable partial schedules.

Whenever the heuristic happens to assign an obviously infeasible start time
to a task t, i.e., start(t) > lft(t) − d(t), t is removed from T PS. The removal is
recursively continued on all tasks t′ which are linked to t by a precedence or a
resource capacity constraint, and the previously determined start time start(t′)
of which can be incompatible with any value in the domain of start(t). After
having processed all the tasks, the algorithm returns with a freely completable
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partial schedule PS. In the best case, it produces a complete schedule, T PS = T ,
while in the worst case, PS is an empty schedule, T PS = ∅. The pseudo-code of
the algorithm is presented in Fig. 1.

Certainly, this simple heuristic can be improved in many ways. First of all,
we applied a small random perturbation on the LFT priority rule. This leads
to slightly different runs in successive search nodes, which allows finding freely
completable partial solutions which were missed in the ancestor nodes nodes.
In experiments (see Sect. 6.), the modified rule, named LFTrand, resulted in
roughly 20 % smaller search trees than LFT.

The time spent for building potentially empty partial schedules can be further
decreased by restricting the focus of the heuristic to partial schedules PS which
obviate the actual branching in the given search node. Task t∗, whose immediate
scheduling or postponement is the next search decision in the constraint-based
solver, is already known before running the heuristic. This next branching would
be eliminated by PS only if t∗ ∈ T PS. Otherwise, finding PS does not imme-
diately contribute to decreasing the size of the search tree, and it is likely that
PS will only be easier to find later, deeper in the search tree. Accordingly, when
FailOnTask is called on t∗, the heuristic algorithm can be aborted and an empty
schedule returned. These improvements can be realized by replacing one line and
adding three lines to the pseudo-code of the basic algorithm, as shown in Fig. 2.

1 PROCEDURE FindAnyCaseConsistentPS()

...

5 Choose a task t ∈ U and a start time τ using the LFTrand rule;

...

12 PROCEDURE FailOnTask(t)
12A IF t is the task on which the branching is anticipated THEN

12B T PS := ∅;
12C EXIT; % The next branching cannot be avoided.

...

Fig. 2. Improvements of the heuristic algorithm.

4.4 An Illustrative Example

In the following, an example is presented to demonstrate the working of the
heuristic algorithm that constructs freely completable partial schedules. Suppose
there are 3 projects, consisting of 8 tasks altogether, to be scheduled on three
unary resources. Tasks belonging to the same project are fully ordered by end-
to-start precedence constraints. The durations and resource requirements of the
tasks are indicated in Fig. 3, together with the time windows received by the
heuristic algorithm from the constraint-based solver in the root node of the
search tree. The trial value of the makespan is 10.
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t d(t) est(t) lft(t) r(t)

t11 1 0 2 R3
t12 4 1 10 R1

t21 2 0 3 R3
t22 2 2 5 R2
t23 5 4 10 R3

t31 2 0 3 R2
t32 4 2 7 R1
t33 3 6 10 R2

R3

t21 t23

t11

t32

t12

R1

t31

t22

t33

R2

Fig. 3. Parameters of the sample problem.

Note that in order to be able to present a compact but non-trivial example,
we switched off the edge-finding resource constraint propagator in the constraint
solver engine, and used time-table propagation only.

The algorithm begins by assigning start times to tasks in chronological order,
according to the LFT priority rule: start(t11) = 0, start(t31) = 0, start(t21) =
1, start(t12) = 1 and start(t22) = 3, see Fig. 4.a. All these tasks are added to
T PS.

R3

t21t11

t31 t22

R2

t12

R1

R3

t21 t23t11

t31 t22 t33

R2

t32

t12

R1

Fig. 4. a.) Building the partial schedule. b.) The freely completable partial schedule.
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Now, it is the turn of t32. Unfortunately, its execution can start the soonest
at time 5, and consequently, it cannot be completed within its time window.
Hence, the function FailOnTask is called on t32, and recursively on all the tasks
which could cause this failure. At this example, it only concerns t12 which is
removed from T PS. Then, further tasks are scheduled according to the LFT
priority rule: start times are assigned to the two remaining tasks, start(t23) = 5
and start(t33) = 7. The heuristic algorithm stops at this point, and it returns the
freely completable partial schedule PS with T PS = {t11, t21, t22, t23, t31, t33},
see Fig. 4.b.

After having bound the start times of these tasks in the constraint-based
solver, the solver continues the search process for the remaining two tasks. In
the next search node, it infers the only remaining valid start times for t12 and
t32 by propagation. This leads to an optimal solution for this problem, as shown
at Fig. 5.

R3

t21 t23t11

t32 t12

R1

t31 t22 t33

R2

Fig. 5. The final schedule.

5 Breaking the Symmetries Between Similar Projects

In real industrial plants, products can often be ordered into a few number of
product families. Members of the same family generally share parts of their
routings, which introduces a huge number of symmetries in the scheduling prob-
lem. We exclude symmetries of similar projects by adding symmetry breaking
constraints to the model before search, by using the following method.

Let P and Q denote two isomorphic subsets of T . P and Q are considered
isomorphic iff their cardinality is the same and their tasks can be indexed such
that

∀i ∈ [1, ..., n] : d(pi) = d(qi) ∧ r(pi) = r(qi), and
∀i, j ∈ [1, ..., n] : (pi → pj) ⇔ (qi → qj) ∧ (pi ��� pj) ⇔ (qi ��� qj).

Furthermore, suppose that there are no outgoing precedence constraints from
P and no incoming precedence constraints to Q.
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Q

q1 q2

q4

q3

P

p1 p2

p4

p3

Fig. 6. Symmetry breaking.

Proposition 2: If there exists a solution S of the scheduling problem, then it
also has a solution S′ which satisfies all the precedence constraints (qi → pi) if
resource r(pi) is unary, and (qi ��� pi) if resource r(pi) has a higher capacity.

Proof: Let us construct the desired solution S′ departing from S by swapping
each pair of tasks pi, qi for which the added precedence constraint is not satisfied:

∀i ∈ [1, ..., n] : start(pi)S′
= max(start(pi)S , start(qi)S),

start(qi)S′
= min(start(pi)S , start(qi)S).

Now, all resource capacity constraints are satisfied in S′, because the dura-
tions and resource requirements of pi and qi are the same. End-to-start prece-
dence constraints (pi → pj) cannot be violated in S′, either, because

– If neither of the ith or jth pairs of tasks were swapped, then the start times
of pi and pj are unchanged in S′ w.r.t S;

– If only the ith pair of tasks was swapped, then
end(pi)S′

= end(qi)S ≤ start(qj)S ≤ start(pj)S = start(pj)S′
;

– If only the jth pair of tasks was swapped, then
end(pi)S′

= end(pi)S ≤ start(pj)S ≤ start(qj)S = start(pj)S′
;

– If both of the ith and jth pairs of tasks were swapped, then
end(pi)S′

= end(qi)S ≤ start(qj)S = start(pj)S′
.

For start-to-start precedence constraints, the proof is analogous. �

Note that by the iterative application of this proposition, an arbitrary number
of symmetrical subsets can be fully ordered. In our system, we add precedence
constraints to the model according to proposition 2. Thus, P and Q stand for
the sections of two projects, which fall into the scheduling horizon, and where
the project containing Q is in a slightly more advanced state. These symmetries
can easily be found with the help of some appropriate task identifiers.
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6 Experiments

The above algorithms were developed and implemented as part of the efforts
to improve the efficiency of the job-shop level scheduler module of our inte-
grated production planner and scheduler system [17, 19, 21]. This scheduler un-
folds medium-term production plans into detailed schedules on a horizon of one
week.

The starting point of the implementation was the constraint-based sched-
uler of Ilog [16]. It was extended by the symmetry breaker as a pre-processor,
and the heuristic algorithm for constructing freely completable partial sched-
ules, run once in each search node. Both extensions were encoded in C++. The
experiments were run on a 1.6 GHz Pentium IV computer.

The test problem instances originate from an industrial partner that manu-
factures mechanical parts of high complexity. The products can be ordered into
several product families. A project, aimed at the fabrication of an end product,
usually contains 50 to 500 machining, assembly and inspection operations. The
precedence relations between the tasks of a project form an in-tree. There are
cc. 100 different unary and cumulative resources in the plant.

Four systems participated in the test: DS denotes a dichotomic search using
only propagation algorithms of the commercial CP solver. First, it was extended
by the symmetry breaker (DS+SB), then by the algorithm for building freely
completable partial solutions (DS+FC). In the last system, all components were
switched on (DS+SB+FC).

Test runs were performed on two sets of data. Problem set 1 consists of 30
instances received from the industrial partner, each containing from 150 up to
990 tasks. The solution time limit was set to 120 seconds. Even the simplest al-
gorithm, DS could find optimal solutions for all but one problem. The symmetry
breaker further improved on its results, but the systems exploiting freely com-
pletable partial solutions were the definite winners, thanks to an extremely low
number of search nodes. In many cases, including those where the first solution
proved to be optimal, these two systems could solve the problems without any
search. The results are presented in Table 1, with separate rows for instances
which could be solved to optimality (+) and those which could not (–). Search
time and search nodes both include finding the solutions and proving optimality.
Error is measured by the difference of the best known upper and lower bounds,
in the percentage of the lower bound.

A set of 18 larger problem instances – with up to 2021 tasks – was generated
by merging several problems from problem set 1. 14 of them were solvable with
standard methods of DS. Just like on problem set 1, identifying the freely com-
pletable partial solutions of the problems significantly reduced the size of the
search tree. The complete system could solve all the problem instances within
the time limit. The detailed results are presented in Table 2 for each problem
instance1.

1 An extended set of problem instances is available online at
http://www.mit.bme.hu/˜akovacs/projects/fcps/instances.html
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Table 1. Results on problem set 1.

Method Number of Avg. search Avg. search Avg. Error
instances nodes time (sec) (%)

DS (+) 29 282.5 2.00 -
DS (–) 1 59073.0 120.00 12.0

DS+SB (+) 30 272.1 1.67 -

DS+FC (+) 30 8.0 0.83 -

DS+SB+FC (+) 30 6.6 0.73 -

Table 2. Results on problem set 2.

Instance Tasks DS DS+SB DS+FC DS+SB+FC
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im

e
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)
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rr
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r

(%
)
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im
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)
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(%
)
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)

E
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(%
)
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e
(s

ec
)
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rr

o
r

(%
)

#1 836 836 14 - 836 11 - 0 8 - 0 0 -
#2 1027 1027 21 - 2054 22 - 0 11 - 0 1 -
#3 1138 2280 27 - 2276 27 - 13 11 - 0 10 -
#4 944 18650 120 7.1 12547 120 4.2 30 14 - 9 8 -
#5 1328 10294 120 11.0 9779 120 4.2 382 120 2.0 9 13 -

#6 639 24991 120 12.2 13785 65 - 2083 120 0.8 8 5 -
#7 1141 12334 120 8.9 2283 32 - 730 120 4.2 137 30 -
#8 994 1988 21 - 1988 22 - 0 7 - 0 8 -
#9 1932 3864 101 - 3857 110 - 0 22 - 0 24 -
#10 1876 3745 99 - 3745 106 - 18 28 - 81 55 -

#11 2021 2021 76 - 2021 82 - 0 30 - 0 33 -
#12 1637 1637 46 - 1637 50 - 0 20 - 0 23 -
#13 1771 1771 53 - 1771 59 - 0 24 - 0 24 -
#14 1337 4004 45 - 1337 27 - 794 112 - 212 32 -
#15 1592 3175 52 - 3184 55 - 525 106 - 0 16 -

#16 1098 1098 32 - 1098 40 - 0 18 - 73 29 -
#17 953 953 22 - 953 28 - 0 14 - 6 13 -
#18 819 819 17 - 811 22 - 0 11 - 0 13 -

The systems were also tested on Lawrence’s job-shop benchmark problems
la01-la20 [6]. Since these benchmarks basically lack the structural properties of
industrial problems that our algorithms exploit, we did not expect the complete
system to significantly improve on the performance of the commercial constraint-
based scheduler. In fact, it turned out that freely completable partial solutions
also exist in these benchmark instances, and our algorithms managed to decrease
the size of the search tree by a factor of 7.3 on average, but this reduction did
not always return the time invested in the construction of freely completable
partial schedules.
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7 Conclusions

In this paper we suggested general notions and specialized algorithms to treat
constraint satisfaction problems that have relatively easy-to-solve and loosely
connected sub-problems in their internal structure. We argued that solutions
of such components should be discovered and separated as freely completable
partial solutions by consistency preserving transformations.

We made this concept operational in the field of resource-constrained project
scheduling. The method was validated on large-size practical scheduling prob-
lems, where only a few search decisions really matter. Such problems are hard to
solve for pure propagation-based solvers because many search decisions produce
equivalent choices. However, by constructing freely completable partial solutions
we were able to avoid growing the search tree by branchings on irrelevant search
decisions, and thus scheduling problems of large size became tractable.

We are currently extending the approach for other application areas of con-
straint programming, such as graph coloring. This requires the creation of heuris-
tic algorithms that build freely completable partial solutions for the given prob-
lem class.
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