
How much backtracking does it take to color

random graphs? Rigorous results on heavy tails

Haixia Jia and Cristopher Moore

Computer Science Department, University of New Mexico, Albuquerque NM 87131
{hjia,moore}@cs.unm.edu

Abstract. For many backtracking search algorithms, the running time
has been found experimentally to have a heavy-tailed distribution, in
which it is often much greater than its median. We analyze two natural
variants of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm for
Graph 3-Coloring on sparse random graphs of average degree c. Let Pc(b)
be the probability that DPLL backtracks b times. First, we calculate
analytically the probability Pc(0) that these algorithms find a 3-coloring
with no backtracking at all, and show that it goes to zero faster than any
analytic function as c → c

∗ = 3.847... Then we show that even in the
“easy” regime 1 < c < c

∗ where Pc(0) > 0 — including just above the
degree c = 1 where the giant component first appears — the expected
number of backtrackings is exponentially large with positive probability.
To our knowledge this is the first rigorous proof that the running time
of a natural backtracking algorithm has a heavy tail for graph coloring.

1 Introduction

Many common search algorithms for combinatorial problems have been found
to exhibit a heavy-tailed distribution in their running times; for instance, in
the number of backtracks performed by the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm and its variants on constraint satisfaction problems, including
Satisfiability, Graph Coloring, and Quasigroup Completion [7–10, 12]. In such a
distribution, with significant probability, the running time is much larger than
its median, and indeed its expectation can be exponentially large even if the
median is only polynomial. These distributions typically take a power-law form,
in which the probability P (b) that the algorithm backtracks b times behaves
as b−γ for some exponent γ. One consequence of this is that if a run of the
algorithm has taken longer than expected, it is likely to take much longer still,
and it would be a good idea to restart it (and follow a new random branch of
the tree) rather than continuing to search in the same part of the search space.

For Graph 3-Coloring, in particular, these heavy tails were found experi-
mentally by Hogg and Williams [10] and Davenport and Tsang [5]. At first, it
was thought that this heavy tail indicated that many instances are exception-
ally hard. A clearer picture emerged when Gomes, Selman and Crato [8] showed
that the running times of randomized search algorithms on a typical fixed in-
stance show a heavy tail. In Figure 1 we show our own experimental data on



2

the distribution of the number of backtracks for two versions of DPLL described
below. In both cases the log-log plot follows a straight line, indicating a power
law. As n increases, the slopes appear to converge to −1, and we conjecture that
Pc(b) ∼ b−1 up to some exponential cutoff.

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10
Distribution of backtracks for lowest index

T
he

 lo
g2

 o
f d

en
si

ty

The log2 of number of backtracks

n=50
n=100
n=200

0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10
Distribution of backtracks for random pick

T
he

 lo
g2

 o
f d

en
si

ty
The log2 of number of backtracks

n=50
n=100
n=200

Fig. 1. Log-log plots of the distribution of the number of backtracks Pc(b) for the two
DPLL algorithms A and B described in the text on random graphs with c = 3.5. The
data appears to follow a power law Pc(b) ∼ b

−1 in the limit n → ∞.

A fair amount of theoretical work has been done on heavy tails, including op-
timal restart strategies [11] and formal models [4]. However, there are relatively
few rigorous results establishing that these tails exist. One exception is Achliop-
tas, Beame, and Molloy [1], who showed using lower bounds on resolution proof
complexity that DPLL takes exponential time on random instances of 3-SAT,
even at some densities below the satisfiability threshold. Our results appear to
be the first on Graph Coloring, and they rely on much simpler reasoning.

Our results hold for two variants of DPLL. Both of them are greedy, in
the sense that they branch on a vertex with the smallest available number of
colors; in particular, they perform unit propagation, in which any 1-color vertex is
immediately assigned that color. They are distinguished by which 2-color vertex
they branch on when there are no 1-color vertices (we focus on the algorithm’s
performance on the giant component, during which there is always a 1- or 2-color
vertex). In algorithm A, the vertices are given a fixed uniformly random ordering,
and we branch on the 2-color vertex of lowest index. In algorithm B, we choose
a vertex uniformly at random from among the 2-color vertices. In both variants,
we try the two possible colors of the chosen 2-color vertex in random order.

Our main result is the following:

Theorem 1. For algorithms A and B, let b be the number of times the algorithm

backtracks on G(n, c/n). If 1 < c < c∗ = 3.847..., there exist constants β, q > 0
such that Pr[b > 2βn] ≥ q. In particular, E[b] = 2Θ(n).



3

Note that this theorem does not show that this tail has a power-law form (al-
though we believe our arguments could be refined to do that); it simply shows
that with positive probability the amount of backtracking is exponentially large.

We rely heavily on the fact that for both these variants of DPLL, a single
random branch is equivalent to a linear-time greedy heuristic, 3-gl, analyzed by
Achlioptas and Molloy [2]. They showed that if 1 < c < c∗ = 3.847... then 3-gl

colors G(n, c/n) with positive probability. (If c < 1 then the graph w.h.p. has
no bicyclic component and it is easy to color.) This shows that Pc(0) > 0 for c
in this range, i.e., with positive probability these variants of DPLL succeed with
no backtracking at all. However, as our results show, the expected amount of
backtracking is exponentially large even for random graphs with c in this “easy”
regime, and indeed just above the appearance of the giant component at c = 1.

2 The probability of success without backtracking

We follow an approach of Achlioptas and Moore [3] and separate the algorithm’s
progress into rounds, where each round consists of coloring a 2-color vertex and
the resulting cascade of 1-color vertices. We use generating functions to calculate
exactly the probability that a given round will fail (and backtrack) by creating
a 0-color vertex. This gives the following result:

Pc(0) = exp

(

−
∫ t0

0

dt
cλ2

2(1 − λ)(2 + λ)

)

+ o(1) . (1)

Here t0 is the unique positive root of 1−t−e−ct = 0 and λ = (2/3)c(1−t−e−ct).
Figure 2 shows that (1) fits our experimental data for graphs of size 104 perfectly.

2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of success without backtracking

T
h

e 
su

cc
es

s 
ra

te

C

Theoretical
Experimental

Fig. 2. A comparison of our calculation (1) of the probability of success (the solid line)
with experimental results with n = 104. Each point is the average of 104 trials.

As c approaches the unique positive root c∗ of c − ln c = 5/2, the integral
in (1) diverges and Pc(0) → 0 faster than any analytic function. Specifically, for



4

c = c∗−ε we have Pc(0) ∼ exp(−A/
√

ε). Using methods from statistical physics,
Deroulers and Monasson [6] found the same critical behavior for heuristics on
random 3-SAT; we expect it for other graph coloring heuristics as well, such
as the smoothed Brelaz heuristic analyzed by Achlioptas and Moore [3] which
succeeds with positive probability for c < c∗ ≈ 4.03.

3 Exponential backtracking with positive probability

In this section we sketch the proof of Theorem 1. We focus on variant A of DPLL;
the reasoning for B is similar.

Let t1 be a constant such that 0 < t1 < t0 where t0, given in the previous
section, is the expected time for the algorithm to color the giant component if
it does so without backtracking. Run the algorithm for t1n steps, conditioning
on not having created a 0-color vertex so far; this is equivalent to running 3-

gl conditioned on its success. At the end of these t1n steps there are w.h.p.
s3(t1)n + o(n) 3-color vertices and s2(t1)/3 + o(n) 2-color vertices of each color
pair, where s3(t1) and s2(t1) are given by the differential equations of [2]. In
addition, the uncolored part of the graph G′ is uniformly random in G(n′, p)
where n′ is the total number of uncolored vertices.

Let us call a triangle bad if it is composed of 2-color vertices whose allowed
colors are red and green, it is disconnected from the rest of G′, and the indices
of its vertices are all greater than the median index of the 2-color vertices in
G′. The number of bad triangles in G′ is essentially Poisson distributed with
expectation Θ(1), so with positive probability there is exactly one of them.

Let us call this bad triangle ∆. It is important to us in the following ways:

1. It is not 2-colorable, so every branch of the subtree below the step creating
∆ will fail, and the algorithm will be forced to backtrack at least to the
(t1n)th step and uncolor one of ∆’s blue neighbors.

2. Since ∆ is isolated from rest of G′, we will find this contradiction only if we
choose one of ∆’s vertices from the pool of 2-color vertices. In particular, we
will not be led to ∆ by a chain of forced steps.

3. A will not color any of ∆’s vertices until it runs out of 2-color vertices of
lower index, and this will not happen for at least s2(t1)n/2 more steps.

Therefore, ∆ will cause the entire subtree starting with these t1n steps to fail,
but we won’t find out about it until we explore the tree Θ(n) more deeply, and
this forces us visit an exponential number of nodes.

Overall, what we are saying is that the events that different branches of the
search tree fail are far from independent; they have a strong positive correlation
since a single bad triangle dooms an entire subtree to failure, and the probability
they all fail is positive even though a random branch succeeds with positive
probability Pc(0). The DPLL algorithm naively tries to 2-color ∆ an exponential
number of times, hoping that recoloring other vertices will render ∆ 2-colorable.
In terms of restarts, once ∆ has “spoiled” an entire section of the search space,
it makes more sense to start over with a new random branch.



5

We would like to go beyond Theorem 1 and prove a power-law distribution,
Pc(b) ∼ b−1. Intuitively, suppose that ∆ appears at a uniformly random depth
d up to a maximum of n, and that the running time b scales as 2Ad for some
A. Then the probability that b is between 2Ad and 2A(d+1) is 1/n, giving a
probability density P (b) = 1/(2Ad(2A − 1)n) ∼ 1/b. Any distribution of d which
varies slowly from Θ(1) to Θ(n) would give the same qualitative result.

A logical question is what happens to the running time if we backtrack im-
mediately whenever we create an odd 2-color cycle, rather than waiting to bump
into it deeper in the search. While this obviates our proof of Theorem 1, we find
experimentally that this variant of DPLL still has a heavy-tailed distribution of
running times. We propose this as a direction for further work.

Acknowledgments. We are grateful to Dimitris Achlioptas, Sinan Al-Saffar,
Paul Beame, Tracy Conrad, Michael Molloy, Remi Monasson, Vishal Sanwalani
and Bart Selman for helpful comments and conversations. This work was sup-
ported by NSF grant PHY-0200909 and the Los Alamos National Laboratory.

References

1. Dimitris Achlioptas, Paul Beame, and Michael Molloy, “A sharp threshold in proof
complexity.” Proc. 33rd Symp. on Theory of Computing 337–346.

2. D. Achlioptas and M. Molloy, “Analysis of a list-colouring algorithm on a random
graph.” Proc. 38th Foundations of Computer Science 204–212.

3. D. Achlioptas and C. Moore, “Almost all graphs of degree 4 are 3-colorable.” Proc.

34th Symp. on Theory of Computing 199–208, and J. Comp. & Sys. Sci. 67 (2003)
441–471, special issue for STOC 2002.

4. H. Chen, C.P. Gomes and B. Selman, “Formal models of heavy-tailed behavior
in combinatorial search.” Proc. 7th Intl. Conf. on the Principles and Practice of

Constraint Programming (2001) 408–422.
5. A. Davenport and E.P.K. Tsang, “An empirical investigation into the exceptionally

hard problems.” Proc. Workshop on Constraint-based Reasoning 46–53.
6. C. Deroulers and R. Monasson, “Critical behaviour of combinatorial search

algorithms, and the unitary-propagation universality class.” Preprint, cond-
mat/0405319.

7. I. Gent, and T. Walsh, “Easy problems are sometimes hard.” Artificial Intelligence

70 (1993) 335–345.
8. C.P. Gomes, B. Selman and N. Crato, “Heavy-Tailed Distributions in Combina-

torial Search.” Proc. 3rd Intl. Conf. on Principles and Practices of Constraint

Programming (1997) 121–135.
9. C.P. Gomes, B. Selman and H.A. Kautz, “Boosting Combinatorial Search Through

Randomization.” Proc. 15th Natl. Conf. on Artificial Intelligence (1998) 431–437.
10. T. Hogg and C.P. Williams, “The Hardest Constraint Problems: A Double Phase

Transition.” Artificial Intelligence 69(1-2) (1994) 359–377.
11. M. Luby, A. Sinclair, and D. Zuckerman, “Optimal speedup of las vegas algo-

rithms.” Information Processing Letters (1993) 173–180.
12. B. Selman, H. Kautz, and B. Cohen, “Local search strategies for satisfiability test-

ing.” In D. Johnson and M. Trick, Eds., DIMACS Series in Discrete Mathematics

and Theoretical Computer Science 26 (1993) 521–532.


