Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3254))

Abstract

Motivated by very/ultra large scale integrated circuit (VLSI/ULSI) physical design applications, we study the construction of rectilinear minimum spanning tree (RMST) with its maximum vertex degree as the constraint. Given a collection of n points in the plane, we firstly construct a graph named the bounded-degree neighborhood graph (BNG). Based on this framework, we propose an O(n log n) algorithm to construct a 4-BDRMST (RMST with maximum vertex degree ( 4). This is the first 4-BDRMST algorithm with such a complexity, and experimental results show that the algorithm is significantly faster than the existing 4-BDRMST algorithms.

This work was supported in part by the NSFC under Grant No.60373012 and No. 60121120706, the SRFDP of China under Grant No.20020003008, and the Hi-Tech Research and Development (863) Program of China under Grant No.2002AA1Z1460.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrera, T., Griffith, J., et al.: Toward a Steiner engine: Enhanced serial and parallel implementations of the iterated 1-steiner algorithm. In: Proc.GLSVLSI, MI, p. 90 (1993)

    Google Scholar 

  2. Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM Journal on Computing 5(4), 724–742 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fekete, S.P., Khuller, S., Klemmstein, M., et al.: A network-flow technique for finding lowweight bounded-degree trees. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 105–117. Springer, Heidelberg (1996)

    Google Scholar 

  4. Fredrickson, G.N.: Data structures for on-line updating of minimum spanning trees. SIAM Journal on Computing 14, 781–798 (1985)

    Article  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Georgakopoulos, G., Papadimitriou, C.H.: The 1-steiner tree problem. Journal of Algorithms 8, 122–130 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Annals of the History of Computing 7, 43–57 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Griffith, J., Robins, G., Salowe, J.S., et al.: Closing the gap: Near-optimal steiner trees in polynomial time. IEEE Trans. on CAD 13(11), 1351–1365 (1994)

    Google Scholar 

  9. Guibas, L.J., Stolfi, J.: On computing all north-east nearest neighbors in the L1 metric. Information Processing Letters 17 (1983)

    Google Scholar 

  10. Hwang, F.K.: On steiner minimal trees with rectilinear distance. SIAM journal on Applied Mathematics 30, 104–114 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hwang, F.K.: An O(n log n) algorithm for rectilinear minimal spanning trees. Journal of the ACM 26(2), 177–182 (1979)

    Article  MATH  Google Scholar 

  12. Kahng, A.B., Robins, G.: A new class of iterated Steiner tree heuristics with good performance. IEEE trans. Computer-Aided Design 11, 893–902 (1992)

    Article  Google Scholar 

  13. Khuller, S., Raghavachari, B., Young, N.: Low degree spanning trees of small weight. SIAM Journal on Computing 25(2), 355–368 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kruskal, M.: On the shortest spanning subtree of a graph, and the traveling salesman problem. Proc. Amer. Math Soc. 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  15. Lee, D.T., Wong, C.K.: Voronoi diagrams in L1(L1) metric with 2-dimensional storage applications. SIAM Journal of Computing 9, 200–211 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems relating to the traveling salesman problem. Journal of Algorithms 5, 231–246 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Preas, B.T., Lorenzetti, M.J.: Physical Design Automation of VLSI Systems. Benjamin/Cummings, Menlo Park, CA (1988)

    Google Scholar 

  18. Prim, A.: Shortest connecting networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  19. Ravi, R., J.onemann: A matter of degree: Improved approximation algorithms for degree- bounded MSTs. In: Proc. ACM Symposium on Theory of Computing (2000)

    Google Scholar 

  20. Robins, G., Salowe, J.S.: Low-degree minimum spanning tree. Discrete and Computational Geometry 14, 151–165 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shute, G.M., Deneen, L.L., Thomborson, C.D.: An O(n log n) plane-sweep algorithm for L1 and L1 delaunay triangulations. Algorithmica 6, 207–221 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM Journal on Computing 11(4), 721–736 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhou, H., Shenoy, N., Nicholls, W.: Efficient spanning tree construction without delaunay triangulation. Information Processing Letters 81(5) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Hong, X., Jing, T., Yang, Y., Hu, X., Yan, G. (2004). An Efficient Low-Degree RMST Algorithm for VLSI/ULSI Physical Design. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2004. Lecture Notes in Computer Science, vol 3254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30205-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30205-6_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23095-3

  • Online ISBN: 978-3-540-30205-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics