Abstract
The paper discusses two policies for recognizing NEs with complex structures by maximum entropy models. One policy is to develop cascaded MaxEnt models at different levels. The other is to design more detailed tags with human knowledge in order to represent complex structures. The experiments on Chinese organization names recognition indicate that layered structures result in more accurate models while extended tags can not lead to positive results as expected. We empirically prove that the {start, continue, end, unique, other} tag set is the best tag set for NE recognition with MaxEnt models.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, A., Pietra, S.D., Pietra, V.D.: A maximum entropy approach to natural language processing. Computational linguistics 22(1), 39–71 (1996)
Ratnaparkhi, A.: A maximum entropy part-of-speech tagger. In: Proceedings of the EMNLP Conference, Philadelphia, PA, pp. 133–142 (1998)
Borthwick, A.: A Maximum Entropy Approach to Named Entity Recognition. Ph.D. thesis, Computer Science Department, New York University (1999)
Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics 43(5), 1470–1480 (1972)
Bikel, D.M., Schwartz, R., Weischedel, R.M.: An algorithm that learns what’s in a name. Machine Learning 34(1/2/3), 211–231 (1999)
Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: Analysis and applications. Machine learning 32, 41–62 (1998)
Pietra, S.D., Pietra, V.D., Lafferty, J.: Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380–393 (1997)
Hong-Kui, Y., Hua-Ping, Z., Qun, L.: Recognition of Chinese Organization Name Based on Role Tagging. In: Proceedings of 20th International Conference on Computer Processing of Oriental Languages, ShenYang, pp. 79–87 (2003)
Shihong, Y., Shuanhu, B., Paul, W.: Description of the Kent Ridge Digital Labs System Used for MUC-7. In: Proceedings of the MUC-7 (1998)
Abney, S.: Partial Parsing via Finite-state Cascades. In: Proceedings of the ESSLLI 1996 Robust Parsing Workshop (1996)
Brants, T.: Cascaded Markov Models. In: Proceedings of 9th Conference of the European Chapter of the Association for Computational Linguistics EACL 1999, Bergen, Norway (1999)
Gao, J., Li, M., Huang, C.-N.: Improved source-channel models for Chinese word segmentation. In: ACL 2003, Sapporo, Japan, July 7-12, pp. 7–12 (2003)
Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: ACL 2003, pp. 423–430 (2003)
Skounakis, M., Craven, M., Ray, S.: Hierarchical Hidden Markov Models for Information Extraction. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, Morgan Kaufmann, San Francisco (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiong, D., Yu, H., Liu, Q. (2005). Tagging Complex NEs with MaxEnt Models: Layered Structures Versus Extended Tagset. In: Su, KY., Tsujii, J., Lee, JH., Kwong, O.Y. (eds) Natural Language Processing – IJCNLP 2004. IJCNLP 2004. Lecture Notes in Computer Science(), vol 3248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30211-7_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-30211-7_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24475-2
Online ISBN: 978-3-540-30211-7
eBook Packages: Computer ScienceComputer Science (R0)