Skip to main content

Decision Trees: More Theoretical Justification for Practical Algorithms

  • Conference paper
Algorithmic Learning Theory (ALT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3244))

Included in the following conference series:

Abstract

We study impurity-based decision tree algorithms such as CART, C4.5, etc., so as to better understand their theoretical underpinnings. We consider such algorithms on special forms of functions and distributions. We deal with the uniform distribution and functions that can be described as a boolean linear threshold functions or a read-once DNF.

We show that for boolean linear threshold functions and read-once DNF, maximal purity gain and maximal influence are logically equivalent. This leads us to the exact identification of these classes of functions by impurity-based algorithms given sufficiently many noise-free examples. We show that the decision tree resulting from these algorithms has minimal size and height amongst all decision trees representing the function.

Based on the statistical query learning model, we introduce the noise-tolerant version of practical decision tree algorithms. We show that if the input examples have small classification noise and are uniformly distributed, then all our results for practical noise-free impurity-based algorithms also hold for their noise-tolerant version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., Hellerstein, L., Karpinski, M.: Learning Read-Once Formulas with Queries. Journal of the ACM 40(1), 185–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aslam, J.A., Decatur, S.E.: Specification and Simulation of Statistical Query Algorithms for Efficiency and Noice Tolerance. Journal of Computer and System Sciences 56(2), 191–208 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., Rudich, S.: Weakly Learning DNF and Characterizing Statistical Query Learning Using Fourier Analysis. In: Proceedings of the 26th Annual ACM Symposium on the Theory of Computing, pp. 253–262 (1994)

    Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group (1984)

    Google Scholar 

  5. Bshouty, N.H., Burroughs, L.: On the Proper Learning of Axis-Parallel Concepts. Journal of Machine Learning Research 4, 157–176 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bshouty, N.H., Feldman, V.: On Using Extended Statistical Queries to Avoid Membership Queries. Journal of Machine Learning Research 2, 359–395 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bshouty, N.H., Mossel, E., O’Donnel, R., Servedio, R.A.: Learning DNF from Random Walks. In: Proceedings of the 44th Annual Symposium on Foundations of Computer Science (2003)

    Google Scholar 

  8. Chernoff, H.: A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations. Annals of Mathematical Statistics 23, 493–509 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cohen, E.: Learning Noisy Perceptron by a Perceptron in Polynomial Time. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pp. 514–523 (1997)

    Google Scholar 

  10. Feige, U.: A Threshold of ln n for Approximating Set Cover. Journal of the ACM 45(4), 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fiat, A., Pechyony, D.: Decision Trees: More Theoretical Justification for Practical Algorithms, Available at http://www.cs.tau.ac.il/~fiat/cart_justification_full.ps

  12. Hancock, T., Jiang, T., Li, M., Tromp, J.: Lower bounds on Learning Decision Trees and Lists. Information and Computation 126(2), 114–122 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Haussler, D.: Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Learning Framework. Artificial Intelligence 36(2), 177–221 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoeffding, W.: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association 58, 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hyafil, L., Rivest, R.L.: Constructing Optimal Binary Decision Trees is NPComplete. Information Processing Letters 5, 15–17 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jackson, J., Servedio, R.A.: Learning Random Log-Depth Decision Trees under the Uniform Distribution. In: Proceedings of the 16th Annual Conference on Computational Learning Theory, pp. 610–624 (2003)

    Google Scholar 

  17. Kalai, A., Servedio, R.A.: Boosting in the Presence of Noise. In: Proceedings of the 35th Annual Symposium on the Theory of Computing, pp. 195–205 (2003)

    Google Scholar 

  18. Kearns, M.J.: Efficient Noise-Tolerant Learning from Statistical Queries. Journal of the ACM 45(6), 983–1006 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kearns, M.J., Mansour, Y.: On the Boosting Ability of Top-Down Decision Tree Learning Algorithms. Journal of Computer and Systems Sciences 58(1), 109–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kearns, M.J., Valiant, L.G.: Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. Journal of the ACM 41(1), 67–95 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kushilevitz, E., Mansour, Y.: Learning Decision Trees using the Fourier Spectrum. SIAM Journal on Computing 22(6), 1331–1348 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mansour, Y., Schain, M.: Learning with Maximum-Entropy Distributions. Machine Learning 45(2), 123–145 (2001)

    Article  MATH  Google Scholar 

  23. Moshkov, M.: Approximate Algorithm for Minimization of Decision Tree Depth. In: Proceedings of 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp. 611–614 (2003)

    Google Scholar 

  24. Murthy, S.K.: Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery 2(4), 345–389 (1998)

    Article  Google Scholar 

  25. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  26. Takimoto, E., Maruoka, A.: Top-Down Decision Tree Learning as Information Based Boosting. Theoretical Computer Science 292, 447–464 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Valiant, L.G.: A Theory of the Learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiat, A., Pechyony, D. (2004). Decision Trees: More Theoretical Justification for Practical Algorithms. In: Ben-David, S., Case, J., Maruoka, A. (eds) Algorithmic Learning Theory. ALT 2004. Lecture Notes in Computer Science(), vol 3244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30215-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30215-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23356-5

  • Online ISBN: 978-3-540-30215-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics