Abstract
Probabilistic inductive logic programming, sometimes also called statistical relational learning, addresses one of the central questions of artificial intelligence: the integration of probabilistic reasoning with first order logic representations and machine learning. A rich variety of different formalisms and learning techniques have been developed. In the present paper, we start from inductive logic programming and sketch how it can be extended with probabilistic methods.
More precisely, we outline three classical settings for inductive logic programming, namely learning from entailment, learning from interpretations, and learning from proofs or traces, and show how they can be used to learn different types of probabilistic representations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abney, S.: Stochastic Attribute-Value Grammars. Computational Linguistics 23(4), 597–618 (1997)
Anderson, C., Domingos, P., Weld, D.: Relational Markov Models and their Application to Adaptive Web Navigation. In: Hand, D., Keim, D., Zaïne, O., Goebel, R. (eds.) Proceedings of the Eighth International Conference on Knowledge Discovery and Data Mining (KDD 2002), Edmonton, Canada, pp. 143–152. ACM Press, New York (2002)
Bergadano, F., Gunetti, D.: Inductive Logic Programming: From Machine Learning to Software Engeneering. MIT Press, Cambridge (1996)
Cussens, J.: Loglinear models for first-order probabilistic reasoning. In: Laskey, K., Prade, H. (eds.) Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1999), Stockholm, Sweden, pp. 126–133. Morgan Kaufmann, San Francisco (1999)
Cussens, J.: Parameter estimation in stochastic logic programs. Machine Learning 44(3), 245–271 (2001)
De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1), 197–201 (1997)
De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146 (1997)
De Raedt, L., Džeroski, S.: First-Order jk-Clausal Theories are PAC-Learnable. Artificial Intelligence 70(1-2), 375–392 (1994)
De Raedt, L., Kersting, K.: Probabilistic Logic Learning. ACM-SIGKDD Explorations: Special issue on Multi-Relational Data Mining 5(1), 31–48 (2003)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc., B 39, 1–39 (1977)
Dietterich, T., Getoor, L., Murphy, K. (eds.): Working Notes of the ICML- 2004 Workshop on Statistical Relational Learning and its Connections to Other Fields, SRL-04 (2004)
Eisele, A.: Towards probabilistic extensions of contraint-based grammars. In: Dörne, J. (ed.) Computational Aspects of Constraint-Based Linguistics Decription-II. DYNA-2 deliverable R1.2.B (1994)
Fürnkranz, J.: Separate-and-Conquer Rule Learning. Artificial Intelligence Review 13(1), 3–54 (1999)
Getoor, L., Jensen, D. (eds.): Working Notes of the IJCAI-2003 Workshop on Learning Statistical Models from Relational Data, SRL-03 (2003)
Haddawy, P.: Generating Bayesian networks from probabilistic logic knowledge bases. In: López de Mántaras, R., Poole, D. (eds.) Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1994), Seattle, Washington, USA, pp. 262–269. Morgan Kaufmann, San Francisco (1994)
Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research (March 1995)
Helft, N.: Induction as nonmonotonic inference. In: Brachman, R., Levesque, H., Reiter, R. (eds.) Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning (KR 1989), Toronto, Canada, May 15-18, pp. 149–156. Morgan Kaufmann, San Francisco (1989)
Jaeger, M.: Relational Bayesian networks. In: Geiger, D., Shenoy, P. (eds.) Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1997), Providence, Rhode Island, USA, pp. 266–273. Morgan Kaufmann, San Francisco (1997)
Jensen, F.: Bayesian networks and decision graphs. Springer, Heidelberg (2001)
Kersting, K., De Raedt, L.: Adaptive Bayesian Logic Programs. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, p. 104. Springer, Heidelberg (2001)
Kersting, K., De Raedt, L.: Bayesian logic programs. Technical Report 151, University of Freiburg, Institute for Computer Science (April 2001)
Kersting, K., De Raedt, L.: Towards Combining Inductive Logic Programming and Bayesian Networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, p. 118. Springer, Heidelberg (2001)
Kersting, K., De Raedt, L.: Principles of Learning Bayesian Logic Programs. Technical Report 174, University of Freiburg, Institute for Computer Science (June 2002)
Kersting, K., Raiko, T., Kramer, S., De Raedt, L.: Towards discovering structural signatures of protein folds based on logical hidden markov models. In: Altman, R., Dunker, A., Hunter, L., Jung, T., Klein, T. (eds.) Proceedings of the Pacific Symposium on Biocomputing, Kauai, Hawaii, USA, pp. 192–203. World Scientific, Singapore (2003)
Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: Rich, C., Mostow, J. (eds.) Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-1998), Madison, Wisconsin, USA, July 1998, pp. 580–587. AAAI Press, Menlo Park (1998)
Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)
Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus of English: The Penn TREEBANK. Computational Linguistics 19(2), 313–330 (1993)
McKachlan, G., Krishnan, T.: The EM Algorithm and Extensions. John Wiley & Sons, Inc., Chichester (1997)
Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc., New York (1997)
Muggleton, S.: Inverse Entailment and Progol. New Generation Computing Journal 13(3-4), 245–286 (1995)
Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 254–264. IOS Press, Amsterdam (1996)
Muggleton, S.: Learning stochastic logic programs. Electronic Transactions in Artificial Intelligence 4(041) (2000)
Muggleton, S.: Learning structure and parameters of stochastic logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206. Springer, Heidelberg (2003)
Muggleton, S., Feng, C.: Efficient induction of logic programs. In: Muggleton, S. (ed.) Inductive Logic Programming, pp. 281–298. Academic Press, London (1992)
Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge bases. Theoretical Computer Science 171(1–2), 147–177 (1997)
Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming. Springer, Heidelberg (1997)
Pearl, J.: Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Morgan Kaufmann, San Francisco (1991)
Pfeffer, A.: Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford University (2000)
Plotkin, G.: A note on inductive generalization. In Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press (1970)
Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64(1), 81–129 (1993)
Quinlan, J., Cameron-Jones, R.: Induction of logic programs: FOIL and related systems. New Generation Computing 13(3-4), 287–312 (1995)
Sato, T.: A Statistical Learning Method for Logic Programs with Distribution Semantics. In: Sterling, L. (ed.) Proceedings of the Twelfth International Conference on Logic Programming (ICLP-1995), Tokyo, Japan, pp. 715–729. MIT Press, Cambridge (1995)
Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
Srinivasan, A.: The Aleph Manual, Available at http://www.comlab.ox.ac.uk/oucl/~research/areas/machlearn/Aleph/
Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Theories for mutagenicity: A study of first-order and feature based induction. Artificial Intelligence 85(1–2), 277–299 (1996)
Stolcke, A., Omohundro, S.: Inducing Probabilistic Grammars by Bayesian Model Merging. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 106–118. Springer, Heidelberg (1994)
Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Raedt, L., Kersting, K. (2004). Probabilistic Inductive Logic Programming. In: Ben-David, S., Case, J., Maruoka, A. (eds) Algorithmic Learning Theory. ALT 2004. Lecture Notes in Computer Science(), vol 3244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30215-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-30215-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23356-5
Online ISBN: 978-3-540-30215-5
eBook Packages: Springer Book Archive