Abstract
A hidden Markov model is introduced for descriptive modelling the mosaic–like structures of haplotypes, due to iterated recombinations within a population. Methods using the minimum description length principle are given for fitting such models to training data. Possible applications of the models are delineated, and some preliminary analysis results on real sets of haplotypes are reported, demonstrating the potential of our methods.
A research supported by the Academy of Finland under grant 201560
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Daly, M., Rioux, J., Schaffner, S., Hudson, T., Lander, E.: High–resolution haplotype structure in the human genome. Nature Genetics 29, 229–232 (2001)
Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
Enattah, N.S., Sahi, T., Savilahti, E., Terwilliger, J.D., Peltonen, L., Järvelä, I.: Identification of a variant associated with adult–type hypolactasia. Nature Genetics 30, 233–237 (2002)
Gabriel, S.B., Schaffner, S.F., Ngyen, H., Moore, J.M., et al.: The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)
Hansen, M.H., Yu, B.: Model selection and the principle of minimum description length. Journal of the American Statistical Association 96, 746–774 (2001)
Koivisto, M., Perola, M., Varilo, T., Hennah, W., Ekelund, J., Lukk, M., Peltonen, L., Ukkonen, E., Mannila, H.: An MDL method for finding haplotype blocks and for estimating the strength of haplotype block boundaries. In: Proc. Pacific Symposium on Biocomputing, pp. 502–513. World Scientific, Singapore (2003)
Koivisto, M., Rastas, P., Ukkonen, E.: Recombination systems. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 159–169. Springer, Heidelberg (2004)
Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov models in computational biology: Applications to protein modeling. J. Mol. Biol. 235, 1501–1531 (1994)
Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applications. Springer, Heidelberg (1997)
Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., et al.: Blocks of limited haplotype diversity revealed by high–resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001)
Phillips, M.S., Lawrence, R., Sachidanandam, R., Morris, A.P., Balding, D.J., et al.: Chromosome–wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genetics 33, 382–387 (2003)
Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)
Rissanen, J.: Stochastic complexity. J. Royal Statistical Society B 49, 223–239 (1987)
Schwartz, R.: Haplotype motifs: An algorithmic approach to locating evolutionarily conserved patterns in haploid sequences. In: Proc. Computational Systems Bioinformatics (CSB 2003), pp. 306–314. IEEE Computer Society, Los Alamitos (2003)
Schwartz, R., Clark, A.G., Istrail, S.: Methods for inferring block–wise ancestral history from haploid sequences: The haplotype coloring problem. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 44–59. Springer, Heidelberg (2002)
Swallow, D.M.: Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37, 197–219 (2003)
Ukkonen, E.: Finding founder sequences from a set of recombinants. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 277–286. Springer, Heidelberg (2002)
Zhang, K., Deng, M., Chen, T., Waterman, M.S., Sun, F.: A dynamic programming algorithm for haplotype block partition. In: PNAS 1999, pp. 7335–7339 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Koivisto, M., Kivioja, T., Mannila, H., Rastas, P., Ukkonen, E. (2004). Hidden Markov Modelling Techniques for Haplotype Analysis. In: Ben-David, S., Case, J., Maruoka, A. (eds) Algorithmic Learning Theory. ALT 2004. Lecture Notes in Computer Science(), vol 3244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30215-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-30215-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23356-5
Online ISBN: 978-3-540-30215-5
eBook Packages: Springer Book Archive