Skip to main content

An Inexpensive Cognitive Approach for Bi-objective Optimization Using Bliss Points and Interaction

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

When an optimization problem encompasses multiple objectives, it is usually difficult to define optimality. The decision maker plays an important role when choosing the final single decision. Pareto-based evolutionary multiobjective optimization (EMO) methods are very informative for the decision making process since they provide the decision maker with a set of efficient solutions to choose from. Despite that this set may not be the global efficient set, we show in this paper that this set can still be informative within an interactive session with the decision maker. We use a combination of EMO and single objective optimization methods to guide the decision maker in interactive sessions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H.A.: Pareto neuro-ensemble. In: Gedeon, T(T.) D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 554–566. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Abbass, H.A.: Speeding up back-propagation using multiobjective evolutionary algorithms. Neural Computation 15(11), 2705–2726 (2003)

    Article  MATH  Google Scholar 

  3. Abbass, H.A., Sarker, R.: The Pareto differential evolution algorithm. International Journal on Artificial Intelligence Tools 11(4), 531–552 (2002)

    Article  Google Scholar 

  4. Buchanan, J.T.: A naïve approach for solving MCDMproblems: the GUESS method. Journal of the Operations Research Society 48(2), 202–206 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Clarke, F.: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York (1983)

    MATH  Google Scholar 

  6. Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  7. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Erickson, M., Mayer, A., Horn, J.: The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 681–695. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Goldberg, D.E.: Genetic algorithms: in search, optimisation and machine learning. Addison Wesley, Reading (1989)

    Google Scholar 

  11. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)

    Article  Google Scholar 

  12. Hart, W.E.: Adaptive global optimization with local search. PhD thesis, University of California, San Diago (1994)

    Google Scholar 

  13. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE transactions on evolutionary computation 7(2), 204–223 (2003)

    Article  Google Scholar 

  14. Knowles, J., Corne, D.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  15. Menczer, F., Degeratu, M., Street, W.N.: Efficient and scalable pareto optimization by evolutionary local selection algorithms. Evolutionary computation 8(2), 223–247 (2000)

    Article  Google Scholar 

  16. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100 (1985)

    Google Scholar 

  17. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons. In: Proceedings of the 2001 congress on evolutionary computation (CEC 2001), pp. 979–986. IEEE press, Los Alamitos (2001)

    Chapter  Google Scholar 

  18. Törn, A., Žilinskas, A.: Global optimization. In: Goos, G., Hartmanis, J. (eds.). LNCS, Springer, Heidelberg (1987)

    Google Scholar 

  19. Teo, J., Abbass, H.A.: Trading-off mind complexity and locomotion in a physically simulated quadruped. In: Wang, L., Tan, K.C., Furuhashi, T., Kim, J.H., Yao, X. (eds.) Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning (SEAL 2002), vol. 2, pp. 776–780 (2002)

    Google Scholar 

  20. Thomas, B.: Evolutionary algorithms in theory and practice. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  21. Thomas, B., David, F., Zbigniew, M.: Handbook of evolutionary computation. Institute of physics publishing and Oxford University (1997)

    Google Scholar 

  22. Ulungu, E.L., Teghem, J., Fortemps, P.H., Tuyttens, D.: MOSA method: a tool for solving multiobjective combinatorial optimization problems. Journal of multicriteria decision analysis 8, 221–236 (1999)

    Article  MATH  Google Scholar 

  23. Zeleny, M.: Multiple criteria decision making: Eight concepts of optimality. Human Systems Management 17, 97–107 (1998)

    Google Scholar 

  24. Zitzler, E., deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abbass, H.A. (2004). An Inexpensive Cognitive Approach for Bi-objective Optimization Using Bliss Points and Interaction. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics