Skip to main content

Multi-objective Optimization of a Composite Material Spring Design Using an Evolutionary Algorithm

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

A multi-objective evolutionary algorithm is applied to optimize the design of a helical spring made out of a composite material. The criteria considered are the minimization of the mass along with the maximization of the stiffness of the spring. Considering the computation time required for finite element analyses, the optimization is performed using approximate relations between design parameters. Dual kriging interpolation allows improving the accuracy of the classical model of spring stiffness by estimating the error between the model and the results of finite element analyses. This error is taken into account by adding a correction function to the stiffness function. The NSGA-II algorithm is applied and shows satisfactory results, while using the correction function induces a displacement of the Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yokota, T., Taguchi, T., Gen, M.: A solution method for optimal weight design problem of helical spring using genetic algorithms. Computers Ind. Engng. 33(1-2), 71–76 (1997)

    Article  Google Scholar 

  2. Gobbi, M., Mastinu, G.: On the optimal design of composite material tubular helical springs. In: Meccanica, vol. 36, pp. 525–553. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  3. Srinivas, D., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Journal of Evolutionary Computation 2(3), 221–248 (1995)

    Article  Google Scholar 

  4. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) Parallel Problem Solving from Nature, vol. 6, pp. 849–858 (2000)

    Google Scholar 

  5. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  6. Hamda, H., Roudenko, O., Schoenauer, M.: Application of a multi-objective evolutionary algorithm to topological optimum design. In: Parmee, I. (ed.) Fifth International Conference on Adaptive Computing in Design and Manufacture (2002)

    Google Scholar 

  7. Lahanas, M., Baltas, D., Zamboglou, N.: A hybrid evolutionary multiobjective algorithm for anatomy based dose optimization algorithm in HDR brachytherapy. Physics in Medecine and Biology 48, 399–415 (2003)

    Article  Google Scholar 

  8. Wu, J.-L., Agogino, A.M.: Automating keyphrase extraction with multi-objective genetic algorithms. In: Proceedings of the 37th Hawaii International Conference on Systems Sciences (2004)

    Google Scholar 

  9. Jin, Y.: Fitness approximation in evolutionary computation: a survey. Soft Computing Journal 4 (2003) (in press)

    Google Scholar 

  10. Cressie, N.: Statistics for Spatial Data. Wiley, Chichester (1993)

    Google Scholar 

  11. Trochu, F.: A contouring program based on dual kriging interpolation. Engineering with Computers 9, 160–177 (1993)

    Article  Google Scholar 

  12. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models. Journal of Artificial Intelligence Research 4, 129–145 (1996)

    MATH  Google Scholar 

  13. Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging. In: Proceedings of The Fifteenth International Conference on Machine Learning, pp. 1–9 (1998)

    Google Scholar 

  14. Parmee, I.: Evolutionary and Adaptive Computing in Engineering Design. Springer, Heidelberg (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ratle, F., Lecarpentier, B., Labib, R., Trochu, F. (2004). Multi-objective Optimization of a Composite Material Spring Design Using an Evolutionary Algorithm. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics