Skip to main content

MHC Class I Epitope Binding Prediction Trained on Small Data Sets

  • Conference paper
Artificial Immune Systems (ICARIS 2004)

Abstract

The identification of potential T-cell epitopes is important for development of new human or vetenary vaccines, both considering single protein/subunit vaccines, and for epitope/peptide vaccines as such. The highly diverse MHC class I alleles bind very different peptides, and accurate binding prediction methods exist only for alleles were the binding pattern have been deduced from peptide motifs. Using empirical knowledge of important anchor positions within the binding peptides dramatically reduces the number of peptides needed for reliable predictions. We here present a general method for predicting peptides binding to specific MHC class I alleles. The method combines advanced automatic scoring matrix generation with empirical position specific differential anchor weighting. The method leads to predictions with a comparable or higher accuracy than other established prediction servers, even in situations where only very limited data are available for training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, H.P., Koziol, J.A.: Prediction of binding to MHC class I molecules. J. Immunol. Methods 185, 181–190 (1995)

    Article  Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  • Altuvia, Y., Schueler, O., Margalit, H.: Ranking potential binding peptides to MHC molecules by a computational threading approach. J. Mol. Biol. 149, 244–250 (1995)

    Article  Google Scholar 

  • Bhasin, M., Singh, H., Raghava, G.P.S.: MHCBN: A comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19, 665–666 (2003)

    Article  Google Scholar 

  • Brusic, V., Rudy, G., Harrison, L.C.: Prediction of MHC binding peptides using artificial neural networks. In: Complex systems: mechanism of adaptation (ed. a.Y.X. Stonier RJ), pp. 253–260. IOS Press, Amsterdam (1994)

    Google Scholar 

  • Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acid Res. 26, 368–371 (1998)

    Article  Google Scholar 

  • Buus, S., Lauemøller, S.L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A., Hilden, J., Holm, A., Brunak, S.: Sensitive quantitative predictions of peptide- MHC binding by a ’Query by Committee’ artificial neural network approach. Tissue Antigens 62, 378–384 (2003)

    Article  Google Scholar 

  • Christensen, J.K., Lamberth, K., Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S.L., Buus, S., Brunak, S., Lund, O.: Selecting Informative Data for Developing Peptide- MHC Binding Predictors Using a "Query By Committee" Approach. Neural Computation 15, 2931–2942 (2003)

    Article  MATH  Google Scholar 

  • Doytchinova, I.A., Flower, D.R.: Toward the Quantitative Prediction of T-Cell Epitopes: CoMFA and CoMSIA Studies of Peptides with Affinity for the Class I MHC Molecule HLA-A*0201. J. Med. Chem. 44, 3572–3581 (2001)

    Article  Google Scholar 

  • Gulukota, K., Sidney, J., Sette, A., DeLisi, C.: Two complementary methods for predicting peptides binding major histocompatibility complex molecules. Journal of Molecular Biology 267, 1258–1267 (1997)

    Article  Google Scholar 

  • Hebsgaard, S.M., Korning, P.G., Tolstrup, N., Engelbrecht, J., Rouze, P., Brunak, S.: Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acid Res. 24, 3439–3452 (1996)

    Article  Google Scholar 

  • Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci., USA 89, 10915–10919 (1992)

    Article  Google Scholar 

  • Henikoff, S., Henikoff, J.G.: Position-based sequence weights. J. Mol. Biol. 243, 574–578 (1994)

    Article  Google Scholar 

  • Kondo, A., Sidney, J., Southwood, S., del Guercio, M.F., Appella, E., Sakamoto, H., Grey, H.M., Celis, E., Chesnut, R.W., Kubo, R.T., et al.: Two distinct HLA-A*0101- specific submotifs illustrate alternative peptide binding modes. Immunogenetics 45, 249–258 (1997)

    Article  Google Scholar 

  • Kubo, R.T., Sette, A., Grey, H.M., Appella, E., Sakaguchi, K., Zhu, N.Z., Arnott, D., Sherman, N., Shabanowitz, J., Michel, H.: Definition of specific peptide motifs for four major HLA-A alleles. J. Immunol. 152, 3913–3924 (1994)

    Google Scholar 

  • Marshall, K.W., Wilson, K.J., Liang, J., Woods, A., Zaller, D., Rothbard, J.B.: Prediction of peptide affinity to HLA DRB1*0401. J. Immunol. 154, 5927–5933 (1995)

    Google Scholar 

  • Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S.L., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science 12, 1007–1017 (2003)

    Article  Google Scholar 

  • Nielsen, M., Lundegaard, C., Worning, P., Sylvester-Hvid, C., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Improved prediction of MHC class I and II epitopes using a novel Gibbs sampling approach. Bioinformatics 20, 1388–1397 (2004)

    Article  Google Scholar 

  • Parker, K.C., Bednarek, M.A., Coligan, J.E.: Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994)

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipies in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  • Rammensee, H., Bachmann, J., Emmerich, N., Bachor, O.A., Stevanovic, S.: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)

    Article  Google Scholar 

  • Rognan, D., Lauemøller, S.L., Holm, A., Buus, S., Tschinke, V.: Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J. Med. Chem. 42, 4650–4658 (1999)

    Article  Google Scholar 

  • Schneider, T.D., Stephens, R.M.: Sequence logos: a new way to display consensus sequences. Nucleic Acid Res. 18, 6097–6100 (1990)

    Article  Google Scholar 

  • Schueler-Furman, O., Altuvia, Y., Sette, A., Margalit, H.: Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Science 9, 1838–1846 (2000)

    Article  Google Scholar 

  • Sette, A., Sidney, J.: Nine major HLA class I supertypes account for the vast preponderance of HLA-A and –B polymorphism. Immunogenetics 50, 201–212 (1999)

    Article  Google Scholar 

  • Stryhn, A., Pedersen, L.O., Romme, T., Holm, C.B., Holm, A., Buus, S.: Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding. Eur. J. Immunol. 26, 1911–1918 (1996)

    Article  Google Scholar 

  • Sweet, J.A.: Measuring the accuracy of a diagnostic systems. Science 240, 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

  • Sylvester-Hvid, C., Nielsen, M., Lamberth, K., Roder, G., Justesen, S., Lundegaard, C., Worning, P., Thomadsen, H., Lund, O., Brunak, S., Buus, S.: SARS CTL vaccine candidates; HLA supertype-, genome-wide scanning and biochemical validation. Tissue Antigens 63, 395–400 (2004)

    Article  Google Scholar 

  • Sylvester-Hvid, C., Kristensen, N., Blicher, T., Ferré, H., Lauemøller, S.L., Wolf, X.A., Lamberth, K., Nissen, M.H., Pedersen, L.Ø., Buus, S.: Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction. Tissue Antigens 59, 251–258 (2002)

    Article  Google Scholar 

  • Yewdell, J.W., Bennink, J.R.: Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annual Review of Immunology 17, 51–88 (1999)

    Article  Google Scholar 

  • Yu, K., Petrovsky, N., Schonbach, C., Koh, J.Y., Brusic, V.: Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol. Med. 8, 137–148 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lundegaard, C. et al. (2004). MHC Class I Epitope Binding Prediction Trained on Small Data Sets. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds) Artificial Immune Systems. ICARIS 2004. Lecture Notes in Computer Science, vol 3239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30220-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30220-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23097-7

  • Online ISBN: 978-3-540-30220-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics