Skip to main content

Using Behavioral Knowledge for Situated Prediction of Movements

  • Conference paper
KI 2004: Advances in Artificial Intelligence (KI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3238))

Included in the following conference series:

Abstract

The textual description of video sequences exploits conceptual knowledge about the behavior of depicted agents. An explicit representation of such behavioral knowledge facilitates not only the textual description of video evaluation results, but can also be used for the inverse task of generating synthetic image sequences from textual descriptions of dynamic scenes. Moreover, it is shown here that the behavioral knowledge representation within a cognitive vision system can be exploited even for prediction of movements of visible agents, thereby improving the overall performance of a cognitive vision system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arens, M., Nagel, H.-H.: Behavioral Knowledge Representation for the Understanding and Creation of Video Sequences. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 149–163. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Arens, M., Ottlik, A., Nagel, H.-H.: Natural Language Texts for a Cognitive Vision System. In: van Harmelen, F. (ed.) Proc. of the 15th European Conf. on Artificial Intelligence (ECAI-2002), Lyon, France, July 21–26, pp. 455–459. IOS Press, Amsterdam (2002)

    Google Scholar 

  3. Blocher, A., Schirra, J.R.J.: Optional Deep Case Filling and Focus Control with Mental Images: ANTLIMA-KOREF. In: Mellish, C.S. (ed.) Proc. of the 14th Int. Joint Conf. on Artificial Intelligence (IJCAI 1995), Montréal, Canada, 20–25 August, pp. 417–423. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  4. Egges, A., Nijholt, A., Nugues, P.: Generating a 3D Simulation of a Car Accident from a Formal Description: the CarSim System. In: Giagourta, V., Strintzis, M.G. (eds.) Proc. of the Int. Conf. on Augmented, Virtual Environments and Three-Dimensional Imaging (ICAV3D), Mykonos, Greece, May 30 – June 1, pp. 220–223 (2001)

    Google Scholar 

  5. Gelb, A. (ed.): Applied Optimal Estimation. The MIT Press, Cambridge (1974)

    Google Scholar 

  6. Gerber, R.: Natürlichsprachliche Beschreibung von Straßenverkehrsszenen durch Bildfolgenauswertung. Dissertation, Fakultät für Informatik, Universität Karlsruhe (TH), Januar (2000) (in German), see: http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=2000/informatik/8

  7. Gerber, R., Nagel, H.-H.: Occurrence Extraction from Image Sequences of Road Traffic Scenes. In: van Gool, L., Schiele, B. (eds.) Proc. of the Workshop on Cognitive Vision, ETH Zurich, Switzerland, 19–20 September, pp. 1–8 (2002), see http://www.vision.ethz.ch/cogvis02/finalpapers/gerber.pdf

  8. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  9. Haag, M., Nagel, H.-H.: Begriffliche Rückkopplung’ zur Behandlung temporärer Verdeckungssituationen in der Bildfolgenauswertung von Strassenverkehrsszenen. In: Dassow, J., Kruse, R. (eds.) Informatik 1998, Informatik zwischen Bild und Sprache, Magdeburg, Deutschland, Informatik aktuell, September 21–25. Jahrestagung der GI, vol. 28, pp. 13–22. Springer, Berlin (1998)

    Google Scholar 

  10. Haag, M., Nagel, H.-H.: Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences. International Journal of Computer Vision 35(3), 295–319 (1999)

    Article  Google Scholar 

  11. Haag, M., Nagel, H.-H.: Incremental Recognition of Traffic Situations from Video Image Sequences. Image and Vision Computing 18(2), 137–153 (2000)

    Article  Google Scholar 

  12. Howarth, R.J., Buxton, H.: Conceptual Descriptions from Monitoring and Watching Image Sequences. Image and Vision Computing 18(2), 105–135 (2000)

    Article  Google Scholar 

  13. Leuck, H.: Untersuchungen zu einer systematischen Leistungssteigerung in der modellbasierten Bildfolgenauswertung, Berichte aus der Informatik, Juli 2000. Dissertation, Fakultät für Informatik, Universit ät Karlsruhe (TH). Shaker-Verlag, Aachen (2001) (in German)

    Google Scholar 

  14. Mukerjee, A., Gupta, K., Nautiyal, S., Singh, M.P., Mishra, N.: Conceptual Description of Visual Scenes from Linguistic Models. Image and Vision Computing 18(2), 173–187 (2000)

    Article  Google Scholar 

  15. Nagel, H.-H.: From Image Sequences towards Conceptual Descriptions. Image and Vision Computing 6(2), 59–74 (1988)

    Article  Google Scholar 

  16. Nagel, H.H., Haag, M., Jeyakumar, V., Mukerjee, A.: Visualisation of Conceptual Descriptions Derived from Image Sequences. In: 21st DAGM-Symposium, Bonn, September 15–17, pp. 364–371. Springer, Heidelberg (1999)

    Google Scholar 

  17. Neumann, B.: Natural Language Description of Time-Varying Scenes. In: Waltz, D. (ed.) Semantic Structures: Advances in Natural Language Processing, pp. 167–206. Lawrence Erlbaum Publishers, Hillsdale (1989)

    Google Scholar 

  18. Schäfer, K.H.: Unscharfe zeitlogische Modellierung von Situationen und Handlungen in Bildfolgenauswertung und Robotik. Dissertation, Fakultät für Informatik, Universität Karlsruhe (TH), Juli 1996; Dissertationen zur Künstlichen Intelligenz (DISKI) 135; infix-Verlag: Sankt Augustin (1996) (in German)

    Google Scholar 

  19. Schirra, J.R.J.: Bildbeschreibung als Verbindung von visuellem und sprachlichem Raum. Dissertation, Fakultät für Informatik, Universität des Saarlandes, Saarbrücken, April 1994; Dissertationen zur Künstlichen Intelligenz (DISKI) 71; infix-Verlag: Sankt Augustin (1994) (in German)

    Google Scholar 

  20. Vu, V.T., Brémond, F., Thonnat, M.: Human Behaviour Visualisation and Simulation for Automatic Video Understanding. In: Skala, V. (ed.) Proc. of the 10th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG-2002), Plzen-Bory, Czech Republic (2002); see Journal of WSCG  10(2), 485–492 (2002) ISSN 1213-6972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arens, M., Ottlik, A., Nagel, HH. (2004). Using Behavioral Knowledge for Situated Prediction of Movements. In: Biundo, S., Frühwirth, T., Palm, G. (eds) KI 2004: Advances in Artificial Intelligence. KI 2004. Lecture Notes in Computer Science(), vol 3238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30221-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30221-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23166-0

  • Online ISBN: 978-3-540-30221-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics