Skip to main content

Line-Based Affine Reasoning in Euclidean Plane

  • Conference paper
Logics in Artificial Intelligence (JELIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3229))

Included in the following conference series:

Abstract

We consider the binary relations of parallelism and convergence between lines in a 2-dimensional affinespace. Associating with parallelism and convergence the binary predicates P and C and the modal connectives [ P] and [C], we consider a first-order theory based on these predicates and a modal logic based on these modal connectives. We investigate the axiomatization/completeness and the decidability/complexity of this first-order theory and this modal logic.

Our research is partly supported by the Centre national de la recherche scientifique, the RILA project 06288TF and the ECONET project 08111TL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbiani, P., Condotta, J.-F., Fariñas del Cerro, L.: Tractability results in the block algebra. Journal of Logic and Computation 12, 885–909 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balbiani, P., Goranko, V.: Modal logics for parallelism, orthogonality, and affine geometries. Journal of Applied Non-Classical Logics 12, 365–377 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bennett, B.: Determining consistency of topological relations. Constraints 3, 213–225 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  6. Chang, C., Keisler, H.: Model Theory, 3rd edn. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  7. Cristani, M.: The complexity of reasoning about spatial congruence. Journal of Artificial Intelligence Research 11, 361–390 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Gerevini, A., Renz, J.: Combining topological and qualitative size constraints for spatial reasoning. In: Maher, M., Puget, J.-F. (eds.) Proceedings of the Fourth International Conference on Principles and Practice of Constraint Programming, Springer-, Heidelberg (1998)

    Google Scholar 

  9. Kutz, O., Sturm, H., Suzuki, N.-Y., Wolter, F., Zakharyaschev, M.: Axiomatizing distance logics. Journal of Applied Non-Classical Logics 12, 425–439 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and Computing 9, 23–44 (1998)

    Article  Google Scholar 

  11. Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: Horn, W. (ed.) Proceedings of the Fourteenth European Conference on Artificial Intelligence, Wiley, Chichester (2000)

    Google Scholar 

  12. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Brachman, R., Levesque, H., Reiter, R. (eds.) Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning, Morgan Kaufman, San Francisco (1992)

    Google Scholar 

  13. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus. Artificial Intelligence 108, 69–123 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vieu, L.: Spatial representation and reasoning in AI. In: Stock, O. (ed.) Spatial and Temporal Reasoning, Kluwer, Dordrecht (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balbiani, P., Tinchev, T. (2004). Line-Based Affine Reasoning in Euclidean Plane. In: Alferes, J.J., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2004. Lecture Notes in Computer Science(), vol 3229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30227-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30227-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23242-1

  • Online ISBN: 978-3-540-30227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics