
Formal Description Techniques
and Software Engineering:

Some Reflections after 2 Decades of Research

Juan Quemada

Dept. of Telematic Engineering, Universidad Politécnica de Madrid
Ciudad Universitaria s/n, 28040, Madrid, Spain

jquemada@dit.upm.es
http://www.dit.upm.es/~quemada

Abstract. Software engineering is based today to a large extend on rapid
prototyping languages or design environments which are high level, very
expresive, executable and enabling the quick production of running prototypes,
whereas formal methods emphasices the preciseness and proper mathematical
foundations which eanble the production of unambiguous references needed in
protocol engineering. The goals of formal methods and rapid prototyping are
not in contradiction, but have very rarely been considered together. This paper
analyzes the evolution, background and main divergence points, in order to
highligh how convergence could be achieved.

1 Introduction

Mathematical models and techniques are at the core of many engineering disciplines
and physical sciences. Those mathematical models usually define abstract views or
properties of systems allowing a better understanding of the main parameters and
elements. Traditionally, engineering disciplines have made use of mathematical
models to highlight the relevant parameters of a given design problem, while hiding
the irrelevant aspects to reduce the complexity of the design process.

Computer science and engineering differs from most engineering disciplines
because it focusses in the design of digital systems which are discrete, as opposed to
the analog nature of the systems addressed by most other engineering disciplines.
Telecomunnication engineering dealt originally with analog radio or electrical
signals, but the strong trend in last decades towards unification of information
representation in digital multimedia formats has transformed most telecomunication
systems into highly specialised computers for switching or processing some kind of
multimedia information in digital format. For example telephone exchanges or packet
routers. Therefore telecom engineering deals today also to a large extend with digital
systems.

Digital systems are implemented directly as hardware systems when the
complexity is low and the higher cost of the design is justified by large productions.
But most digital system designs are implementated as software. Software based
systems have usually a huge complexity and therefore research has focussed

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 33-42, 2004.
© IFIP International Federation for Information Processing 2004

34 Juan Quemada

intensively during the last decades in methods and techniques able to cope with
complexity.

Mathematical models of discrete systems have been used since the beginnings of
computer science. Digital systems are modelled with various types of finite state
machines, also called automata. But the huge number of states that most systems
have, makes this model more a conceptual tool than a real engineering tool. Therefore
automata were extended with standard programming variables to achieve a more
understandable representation of large state spaces, leading to “extended automata” as
a more powerfull mathematical model of discrete systems.

The programs of the first processors were coded directly in the machine language
of the processor. The reference which defined the semantics of the machine language
and the programs was the processor itself and there was not a need of a mathematical
model of the processor for program designers.

High level languages, such as Fortran, Cobol, Pascal or C, appeared soon and
provided mathematical abstractions of digital states in the form of variables and of
program control in the form of high level program instructions. High level languages
have a much higher expressive power than machine language and allow more
productive and effective designs of programs. High level language programming is
based on a set of software tools (compilers, debuggers, etc.) which allow execution of
high level programs. High level languages have been also applied to the design of
hardware systems.

High level languages created the need for new mathematical models, because tools
for high level programming languages have to be implemented usually in many
different processors and operating systems. Therefore a precise definition of the
syntax and semantics of programming languages was needed, as a reference for
compiler implementation, because all compilers should generate a code executing in
the same way in each different processor or operating system.

There exists also a large community of more practmatic computer scientists that
claim that the most effective way of defining semantics is having reference
implementations. Reference implementations are implementations which have been
extensively validated and agreed within a given community or committee to be the
reference towards which correctness will be determined. Reference implementation
are usually based on open software to facilitate product generation.

About two decades ago a big community of researchers and engineers started to
apply mathematical modelling languages as a means to precisely define the semantics
and behaviour of complete computer systems or parts of them, because they claimed
that many problems of existing software or systems were due to the lack of a precise
mathematical definition of the languages, procedures and tools used.

This community was especially important in computer networking [8], because
network protocols are algorithms which have to be implemented in any machine to be
connected to a network and mathematical models were considered the most precise
way of specifying the protocols which should form the reference architecture of the
standardized computer networks which were being designed at that time.

This community was named the “formal methods” or “formal techniques”
community and had as it main objective the development of rigurous and precise
mathematical techniques able to support the development of programs, computers

Formal Description Techniques and Software Engineering 35

systems, communication protocols, etc. The ultimate goal of this community was the
development of a complete mathematical formalization of the software and systems
design process, covering from the initial requirements specification phases to the final
implementation of the running systems, which assured the correctness by construction
of the implementation with respect to all the requirements and design decisions
imposed during the development process.

To achieve this goal many new elements are needed such as, precise description
languages, abstraction, stepwise refinement, correctness verification and validation
techniques, transformation techniques, implementation generation techniques, testing
tools and theories, etc. All this new developments should have a well defined
mathematical semantics and should enable a new era of rigorous and fail save
software and systems design.

The paper will focuss in the rest on the analysis of the achievements and failures
and especially in the relation with techniques which have been accepted in industry
for performing software engineering. The paper focusses also only in the use of
formal methods in protocol engineering, communication networks and distributed
applications, although many of the conclusions can be applied to a more general
context.

2 Software Engineering and Formal Methods

Software engineering is the discipline concerned with creating and maintaining
software applications by applying computer science, project management, domain
knowledge, and other skills and technologies. Cost-effectivenes, product development
lead-times, existance of proper design tools or environments and availability of
trained people are mandatory issues for industry to accept new methods or tools.

Most protocol implementations are software developments and therefore, formal
methods research should address industry priorities and should fully integrate into
software engineering practices to be successfully incorporated. Lets analyze how
formal methods and software engineering have evolved to try to understand better
how formal methods research should be incorporated in software engineering
practices.

Formal methods based processes rely on the vision that the main characteristics
and features of a system can be specified in the first phase of the design process and
that the rest of this design process refines this initial specification introducing design
decisions which lead at the end of the process to a correct implementation which
fulfills the initial requirements.

The design process may consist of more than one step, where each step takes as
input a given partial definition of the system and generates a more complete
definition of the system which should be proven correct with respect to the previous
design steps, by some kind of mathematical correctness proof. In networking
architectures the input specification is usually called the service and the
implementation of the service is called the protocol.

This design model is very much in line with the waterfall model proposed in 1970
by W. Royce [1], which is considered somehow obsolete. It has been considered by
several authors as the “dream of the western manager” because it would allow

36 Juan Quemada

managers to precisely specify their objectives, strategies and requirements, which the
rest of the organisation should just implement. Such a model would provide the
project manager with an absolute amd rigorous control of the developments made.

During all those years of intensive research in formal methods, the software
engineering community and industry has evolved and developed different approaches
which have proven very effective, such as rapid prototyping, the spiral model,
extreme programming, agile methods, etc [2, 3, 4], which have been widely accepted
by industry.

Those methods are based on the vision that the main features of a complex system
can not be properly understood in the first phases of the design process. Designers
know at the beginning only the problem they have to solve.

The design process should be therefore an incremental learning and design process
based on rapid prototyping. Early prototypes must be produced of the least
understood parts, to gain a better understanding, as well as to obtain early
user/customer feedback and allow testing.

As the “Manifesto for Agile Software Development” [3] states, the emphasis is
put, in those approaches, much more on frequent software prototypes, adaptation to
changes and direct interaction/collaboration among designers and/or customers, than
on requiremments, planning or documentation.

In prototyping based software engineering approaches the emphasis is put on rapid
prototyping languages or design environments which are high level, very expresive
and executable, enabling the quick production of running prototypes, rather than in
preciseness or proper mathematical foundations as formal methods emphasice.

The goals of formal methods and of rapid prototyping are not in contradiction, but
have very rarely been considered together. The formal methods community should
probably take into account the main trends of software engineering and try to provide
solutions for the problems that software engineering has, rather than trying to develop
a complete independent design framework.

2.1 Dealing with Complexity and Reusability of Software

Management of complexity has been one of the main challenges in software
engineering. Abstraction is the main conceptual tool for dealing with complexity and
most programming and specification languages include abstraction mechanisms such
as, procedures as abstractions of operations, variables/records/structures as
abstractions of state, objects as abstractions of program modules with clear usage
interfaces, processes as abstractions of behaviour, etc.

There exist a large consensus that the object oriented model is the right abstraction
mechanism in sequential programming languages, for building well structured
programs, as well as reusable libraries of software components. On the process side
there is not such a consensus and several models exist especially for interprocess
communication.

Todays design and programming languages, as well as, software engineering tools
have evolved to support the needs of both, software engineering practices and
mangement of complexity. Nevertheless, the abstraction mechanisms supported in
programing languages provide only syntactic support for the abstraction mechanisms.

Formal Description Techniques and Software Engineering 37

Formal methods should have provided semantic support for abstractions and have
produced interesting results in this direction, but the languages and mechanisms used
do not fulfill the software engineering needs.

Providing support for semantic abstraction in a framework which is applicable in
todays software engineering practices is one of the still unrealized main promises of
formal methods.

3 Protocol Engineering and FDT Standards
(Formal Description Techniques)

The advent of computer networking led to the proposal of protocol engineering as
somehow different form software engineering [5, 6, 7, 8]. Protocol engineering
considered the following vision and goals, especially within the community which
considered that the use of formal methods was the only way of creating a rigorous
engineering discipline.

• Protocol standards should be legal or defacto standards which provide an
unambiguous reference for deriving implementations, as well as conformance
test which could assess in practice the correctness of implementations with
respect to the protocol standard.

• Protocols standards should be correct. As correctness can only be determined
with respect to a given set of requirements, the service definition was considred
the requirements to be met by a given protocol.

This vision and goals led to some specific challenges which have guided
researchers in the formal protocol engineering community during the last two
decades, such as

• Challenge 1. Development of a language for unambiguosly representing
protocol standards: To achieve this challenge FTDs (Formal Description
Techniques) should be developed and standardized to provide a unambigous
means for describing protocol standards.

• Challenge 2. Protocol representations should be proven correct: To achieve this
challenge each protocol should be accompanied by a service specification and
a proof that states that the protocol is a correct implementation of the service.
As there are some properties about correctness, such as deadlock or starvation
absence, which are independent of the service specification an additional
validation of such properties was required.

• Challenge 3. Protocols should also provide the best performance: To achieve
this challenge automatic derivation of analytic or simulation models should be
possible where protocol performance could be anlyzed and optimized.

• Challenge 4. Protocol representations should allow automatic derivation of
correct protocol imlementations: To achieve this challenge automatic derivation
of implementations using correctness preserving transformations were needed.

• Challenge 5. There should exist a procedure to verify or validate the
correctness of protocol implementations: This procedure was assumed to be

38 Juan Quemada

based in conformance testing of implementations under test. To achieve this
challenge automatic test suite derivation from the protocol description should
be possible with sufficient coverage of the protocol behaviour and state space.

The first formal description technique was IBMs FAPL [5] which was used to
deploy early IBM network architectures to a wide range of system, soon followed by
other proposals. The advantages of having standardized FDT became clear soon. The
first standardized FDT (or semi, becuase it was not fully formal at the beginning) was
CCITTs SDL [6] which is based on an extended finite state machine model. SDL has
been also the most successfull standardized FDT due to it's use for defining several
CCITT/ITU standards, although the core of the software industry has not adapted it.
The definition of the ISO-OSI reference model during the eighties and nineties led to
the definition of two additional FDTs, which where competing with each other and
with SDL as well. The first one was Estelle [6], which was based on an extended
finite state machine model and standard Pascal data types. The second one was
LOTOS [6], which was based on an algebraic calculus of processes and algebraic
data types.

There were therefore 2 FDTs (SDL, ESTELLE) based on the less abstract
“extended automata” model and one FDT (LOTOS) based on the more abstract
mathematical theories of algebraic calculi of processes and algebraic data types. SDL
and Estelle are much like programming languages and have more or less the same
level of abstraction than C, Pascal, ADA or Java, although they were better suited for
protocol representation. LOTOS on the other hand is more abstract, but it's main
drawback for application in software engineering is the ACT ONE data definition
language which has an algebraic semantics and is not executable. The behaviour part,
based on a mixture of CCS [9] and CSP [10], was extremely powerfull and provided
solutions for dealing with semantic abstraction which do not exist in todays design
languages and tools. But the lack of executability of the data part made LOTOS
difficult to apply.

Although protocols and network architectures have some minor distinguishing
features with respect to other software developments, the mayority of the elements of
the discipline are comon to software engineering and in my opinion, it would have
been wiser to consider protocol engineering as a specialization of software
engineering which inherits all it's elements and procedures. The design of the Internet
was done following many of the software engineering principles explained before and
its success was probably due to the higher effectiveness of rapid prototyping
approach as compared to the more waterfall oriented approaches based on formal
methods, which were used by standards organisations (ISO, CCITT/ITU) and the
formal methods community.

4 Protocol Engineering and the Internet

The success of the Internet was due to many factors. The most important factor was
probably the early availability of running implementations of the TCP/IP stack, as
well as the availability of a large variety of applications. When ISO was starting
work on developing FDTs, the Internet was already operational. Nevertheless, the
development and of course the success of the Internet would not have been possible

Formal Description Techniques and Software Engineering 39

if the designers would not have provided effective solutions to the challenges of
protocol engineering. The protocol engineering behind the Internet was not based in
formal methods, but provided quite effective solutions which could align in many
cases even with the agile software development manifesto.

The working procedures of the IETF, the Internet Engineering Task Force, where
all Interent standards are produced since it was created in 1886, are close to the
sofware engineering practices based on rapid prototyping described before. The
working procedures of the IETF are also much more democratic than those of most
standard organisations and have had a big impact in the way technology is produced
today. The effectiveness of the procedures used for developing protocols and
applications in the IETF led to the early availability of many running services, which
had been properly tunned and adapted to users needs, even if many of the
components used where not properly optimized. Lead times were more important
than quality of the result.

The IETF promoted from the beginning the open participation of researchers into
standardization committees, where participants could attend on a personal basis
without any accreditation or fee as it is usually necessary in official standard bodies.
IETF has also not avoided the existance of competing standards proposals, accepting
only the proposals which were widely accepted by the user community. A standard
was never accepted without two or more running implementations. Those
implementations were used as references and were usually open software which could
be used in the implementation of the standards on other machines. Those practices
motivated a large community of researchers and developers to contribute to the
production of the IETF standards.

The Internet designers dealt as follows with the challenges of protocol engineering

• Challenge 1. Development of a language for unambiguosly representing
protocol standards: IETF standards are described as informal textual
descriptions to facilitate the understandability. The use of ASCII text has been
promoted to facilitate editing. Nevertheless, textual description of standards are
complemented by reference implementations in C, Java, PERL, ..., which are
the real references with which implementations must interwork.

• Challenge 2. Protocol representations should be proven correct: Correctness
was substituted by rapid prototyping and user evaluation. Proposed standards
had to have several running implementations interworking among them. User
acceptance substituted proofs of correctness. This makes a lot of sense, because
a correctness proof of a protocol implementation with respect to a service does
not mean anything. The important issue is to have services which are accepted
and usefull for users.

• Challenge 3. Protocols should also provide the best performance: Protocols
were optimized using standard simulation techniques. Running prototypes
provided also a lot of early feedback to improve the performance problems of
the first versions of the standards.

• Challenge 4. Protocol representations should allow automatic derivation of
correct protocol imlementations: Reference implementations did provide an
effective way of deriving implementations, because most of them are based in
open software. They were ported and easily recompiled in new machines.

40 Juan Quemada

Reference implementations were written in high level languages for which
compilers existed in most machines such as C, Java, PERL, etc. Only the small
part of the code which was hardware or O.S. dependant had to be rewritten.

• Challenge 5. There should exist a procedure to verify or validate the
correctness of protocol implementations: Interworking of implementations
substituted conformance testing. As most implementation were derived from
the same reference implementation interworking was not difficult to achieve.

The solutions given to the challenges of protocol engineering were not very
innovative, but were cost effective and ready to apply. Therefore innovation focussed
in providing new services, new networking technologies or improved versions of the
protocols. Most services were not optimized, but were providing a nice service, were
running and were ready to deploy.

On the other hand, in the development of the ISO-OSI reference model and in
CCITT/ITU FDTs were defined from scratch and as no agreement could be reached
there were three FDTs competing. No tools were available at the beginning and a lot
of time and research effort was necesary to have the first prototypes of the compilers
and design environments ready. The first implementations of the protocols had to be
therefore handcoded. In addition the ISO-OSI protocol stack had a lower performance
than the Internet stack due to the fact that the protocols were first specified and then
implemented. The design life-cycle was very in line with the waterfall model and did
not assure a proper and well tunned result in time. When this was detected it was too
late to produce a better version of the OSI protocols. There were many other causes
for this delay, especially of political nature, but the use of a different methodological
approach would have led very likely to a better technical result. The Internet had
started deployment and as it was the only widely available working solution, it was
adopted by industry despite of the big political support in favour of OSI.

5 Opportunities and Challenges for Formal Methods Today

Research in formal methods has not taken into account software engineering practices
and methodologies as used in industry and therefore the results obtained are difficult
to apply in real software developments. Software engineering practices need several
features as mandatory, such as

• Support for rapid prototyping. The development of early prototypes plays a
crucial role in todays systems design because it enables an early user or
customer evaluation, which verification, validation or formal proof systems can
not support by any means. Early prototyping allows to validate the usability,
functionality or friendliness and enables early tuning or redisgn. Effective rapid
prototyping languages must be executable and be very expressive:

o Executability. Non executable mathematical modelling languages do not
seem to have applicability in todays software engineering because they do
not allow prototyping.

o Being high level. Design languages must allow prototype development with a
minimum effort and should have therefore powerfull instructions which

Formal Description Techniques and Software Engineering 41

allow prototype implementation with a minimum number of instructions or
statements.

• Support reusability of classes and objects. Design languages must facilitate
reusability. As object oriented languages are considered as the ones which
provide the best support for reusability, formal design languages should
support object orientation.

• Support for reusability of behaviour definitions. The behaviour or process part
of the existing design languages needs probably still substantial research,
because no consensus exist about the best formalism. Algebraic calculi of
process theory has provided executable process models with very high
expressive power and nice abstraction features, although integration into
conventional design languages should be done.

• Support for semantic abstractions. Design languages for complex systems need
to have some kind of semantic abstractions which allow to decompose the
design process into a sequence of understandable steps. Most design languages
provide some support, but without providing a formal semantics, where
abstraction mechanisms just perform syntax matching of interfaces. This is
probably one of the places where formal methods can provide better design
methods. For example the hiding operation of CCS [9] and LOTOS [6] is a
very powerfull abstraction mechanism. The testing or conformance relations
[11, 12] of CCS and LOTOS are formal notions of implementation which can
be integrated quite smothly into software engineering practices.

Protocol implementations are like other hardware or software implementations and
therefore protocol engineering should fully align with software engineering practices.
The need for a more formal approach to systems and application design still exists,
but must not ignore all the pragmatic lessons learned in large software developments
in industry.

Formal methods researchers should try to develop design languages with support
for rapid prototyping, with a high expresive power and also with support for semantic
abstractions for classes and behaviours. This would allow a much smoother design
process by stepwise refinement where, instead of having the usual sequence of non
executable formal descriptions, a sequence of executable prototypes would be
generated, where each prototype can be proven as a correct implementation of the
previous one, but which can also be evaluated and validated by users/customers.

The LOTOS formal description technique [6] got very near to this approach at the
behaviour part, providing semantic abstraction mechanisms which do not exist in the
design languages used today in software engineering. But the algebraic data part
made it unusable for software engineering. A language based on the LOTOS
behaviour part and a conventional executable data typing would have been a very
powerfull design language at that time. Some industrial trials performed in the
nineties validated this approach [13]. It was a pitty that this opportunity was missed.

An expressive and executable language providing formal support to design by
stepwise refinement can enhance todays state of the art. This language should
incorporate all the features which today are mandatory in software engineering such
as, object orientation or module and interface constructs, and of course should

42 Juan Quemada

support semantic abstractions for objects and behaviour in a way which can be easily
mapped in todays engineering practices.

There exist opportunities for using formal methods research results to enrich
existing design languages and methodologies. For example: The new Web
architectural framework with all the new XML based languages and tools; or to
enhance well accepted design languages such as Java of C#.

References

[1] Royce, W.W., Managing the Development of Large-Scale Software: Concepts and
Techniques Proceedings, Wescon, August 1970.

[2] Zave, P., The Operational versus the Conventional Approach to Software Development,
Com. Of the ACM, 27 (2), 1984, pp.104-118.

[3] Boehm, B.W., Anchoring the Software Process, IEEE Software, July 1996, pp.73-82.
[4] Agile Processes, http://www.c2.com/cgi/wiki?AgileProcesses.
[5] Schultz, G.D., Rose, D.B., West, C.H., Gray, J.P. Executable Description and

Validation of SNA, IEEE Transactions on Communications, April 1980, pp. 661-677.
[6] Turner, K. J. (Editor), Using Formal Description Techniques, An Introduction to Estelle,

LOTOS and SDL, John Wiley and Sons, 1993, ISBN 0-471-93455-0.
[7] Bowman, H., Derrick, J., Formal Methods for Distributed Processing: A Survey of

Object Oriented Approaches, Cambridge University Press, 2001, ISBN 0-521-77184-6.
[8] Special issue on Protocol Engineering, IEEE Transactions on Computers, Volume 40 ,

Issue 4 , April 1991.
[9] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Computer Science

92, Springer-Verlag 1980.
[10] Hoare, C. A. R., Communicating Sequential Processes, Prentice Hall International,

Englewood Cliffs, New Jersey, 1985.
[11] De Nicola, R., Hennesy, M., Testing Equivalences for Processes, Theoretical Computer

Science, 34:83-133, 1984.
[12] Brinksma, E., Scollo, P., Formal Notions of Implementation and Conformance in

LOTOS.
[13] Fernandez, A., Miguel, C., Vidaller, L., Quemada, J., Development of a Satellite

Communication Network Based on LOTOS, IFIP Transactions C-8: Protocol
Specification, Testing and Verification XII, pp. 179-193, North-Holland, June 1992,
ISSN 0926-549X.

	Formal Description Techniques and Software Engineering: Some Reflections after 2 Decades of Research

