Abstract
Passage time densities are useful performance measurements in stochastic systems. With them the modeller can extract probabilistic quality-of-service guarantees such as: the probability that the time taken for a network header packet to travel across a heterogeneous network is less than 10ms must be at least 0.95. In this paper, we show how new tools can extract passage time densities and distributions from stochastic models defined in PEPA, a stochastic process algebra. In stochastic process algebras, the synchronisation policy is important for defining how different system components interact. We also show how these passage time results can vary according to which synchronisation strategy is used. We compare results from two popular strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hillston, J.: A Compositional Approach to Performance Modelling. Distinguished Dissertations in Computer Science, vol. 12. Cambridge University Press, Cambridge (1996)
Bernardo, M., Gorrieri, R.: Extended Markovian Process Algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)
Hermanns, H.: Interactive Markov Chains. PhD thesis, Univ. Erlangen-Nürnberg (1998)
Gilmore, S., Hillston, J.: The PEPA workbench: A tool to support a process algebra-based approach to performance modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)
Clark, G., Gilmore, S., Hillston, J., Thomas, N.: Experiences with the PEPA performance modelling tools. In: UKPEW 1998, Proceedings of the 14th UK Performance Engineering Workshop (1998)
de Alfaro, L.: How to specify and verify the long-run average behaviour of probabilistic systems. In: Proc. of the 13th IEEE Symp. on Logic in Computer Science, IEEE, Los Alamitos (1998)
Bowman, H., Bryans, J.W., Derrick, J.: Analysis of a multimedia stream using stochastic process algebras. The Computer Journal 44, 230–245 (2001)
El-Rayes, A., Kwiatkowska, M., Norman, G.: Solving infinite stochastic process algebra models through matrix-geometric methods. In: [24], pp. 41–62.
Wan, F.: Interface engineering and transient analysis for the PEPA Workbench. Master’s thesis, School of Computer Science, The University of Edinburgh (2000)
Hermanns, H., Herzog, U., Hillston, J.: Stochastic process algebras—A formal approach to performance modelling. Tutorial, Dept. of Computer Science, Univ. of Edinburgh (1996)
Clark, G., Sanders, W.: Implementing a stochastic process algebra within the Möbius modeling framework. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 200–215. Springer, Heidelberg (2001)
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 52–66. Springer, Heidelberg (2002)
Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler. In: Kotsis, G. (ed.) MASCOTS 2003, Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, University of Central Florida, pp. 344–351. IEEE Computer Society Press, Los Alamitos (2003)
Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
Hillston, J.: The nature of synchronisation. In: Herzog, U., Rettelbach, M. (eds.) Proc. of the 2nd Int. Workshop on Process Algebras and Performance Modelling, Erlangen, pp. 51–70 (1994)
Bradley, J.T., Davies, N.J.: Reliable performance modelling with approximate synchronisations. In: [24], pp. 99–118.
Götz, N., Herzog, U., Rettelbach, M.: TIPP—Introduction and application to protocol performance analysis. In: König, H. (ed.) Formale Beschreibungstechniken für verteilte Systeme. FOKUS, Saur-Verlag (1993)
Priami, C.: A stochastic π-calculus. In: Gilmore, S., Hillston, J. (eds.) Process Algebra and Performance Modelling Workshop. Special Issue: The Computer Journal, CEPIS, vol. 38(7), pp. 578–589 (1995)
Argent-Katwala, A., Bradley, J.T., Dingle, N.J.: Expressing performance requirements using regular expressions to specify stochastic probes over process algebra models. In: Almeida, V., Lea, D. (eds.) WOSP 2004, Proceedings of the 4th International Workshop on Software and Performance, Redwood City, California, pp. 49–58. ACM, New York (2004)
Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Extracting passage times from PEPA models with the HYDRA tool: a case study. In: Jarvis, S.A. (ed.) UKPEW 2003, Proceedings of 19th Annual UK Performance Engineering Workshop, pp. 79–90 (2003)
Harrison, P.G., Knottenbelt, W.J.: Passage-time distributions in large Markov chains. In: Martonosi, M., e Silva, E.d.S. (eds.) Proc. of ACM SIGMETRICS 2000, pp. 77–85 (2002)
Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Response time densities in Generalised Stochastic Petri Net models. In: Proceedings of the 3rd International Workshop on Software and Performance (WOSP 2002), Rome, pp. 46–54 (2002)
Dingle, N.J., Knottenbelt, W.J., Harrison, P.G.: HYDRA: HYpergraph-based Distributed Response-time Analyser. In: Arabnia, H.R., Man, Y. (eds.) PDPTA 2003, Proceedings of the 2003 International Conference on Parallel and Distributed Processing Techniques and Applications, Las Vegas, NV, vol. 1, pp. 215–219 (2003)
Hillston, J., Silva, M. (eds.): PAPM’99, Proceedings of the 7th International Workshop on Process Algebra and Performance Modelling. In: Hillston, J., Silva, M., eds.: Process Algebra and Performance Modelling Workshop, Centro Politécnico Superior de la Universidad de Zaragoza, Prensas Universitarias de Zaragoza (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bradley, J.T., Gilmore, S.T., Thomas, N. (2004). How Synchronisation Strategy Approximation in PEPA Implementations Affects Passage Time Performance Results. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K., Rubio, F. (eds) Applying Formal Methods: Testing, Performance, and M/E-Commerce. FORTE 2004. Lecture Notes in Computer Science, vol 3236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30233-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-30233-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23169-1
Online ISBN: 978-3-540-30233-9
eBook Packages: Springer Book Archive