Skip to main content

World Modeling

  • Reference work entry
Springer Handbook of Robotics

Abstract

In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topological maps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-based maps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.

Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EKF:

extended Kalman filter

EM:

expectation maximization

SLAM:

simultaneous localization and mapping

References

  1. H.P. Moravec, A.E. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1985)

    Google Scholar 

  2. H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun: Principles of Robot Motion: Theory, Algorithms and Implementation (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  3. D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 112–122 (1973)

    Google Scholar 

  4. D. Sack, W. Burgard: A comparison of methods for line extraction from range data, Proc. IVAC Symp. Intell. Auton. Vehicles (IAV) (2004)

    Google Scholar 

  5. P. Beeson, N.K. Jong, B. Kuipers: Towards autonomous topological place detection using the extended Voronoi graph, IEEE Int. Conf. Robot. Autom. (ICRA) (2005)

    Google Scholar 

  6. B.J. Kuipers, Y.-T. Byun: A robust qualitative method for spatial learning in unknown environments, Proc. Nat. Conf. Artif. Intell. (AAAI) (1988)

    Google Scholar 

  7. H. Choset, K. Nagatani: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization, IEEE Trans. Robot. Autom. 17(2), 125–137 (2001)

    Article  Google Scholar 

  8. M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: a factored solution to the simultaneous localization and mapping problem, Proc. Nat. Conf. Artif. Intell. (AAAI) (2002)

    Google Scholar 

  9. S. Thrun: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millenium, ed. by G. Lakemeyer, B. Nebel (Morgan Kaufmann, New York 2002)

    Google Scholar 

  10. M. Maimone, P. Leger, J. Biesiadecki: Overview of the Mars exploration roversʼ autonomous mobility and vision capabilities, IEEE Int. Conf. Robot. Autom. (2007)

    Google Scholar 

  11. S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, R. Chatila: Autonomous rover navigation on unknown terrains: functions and integration, Int. J. Robot. Res. 21(10-11), 917–942 (2002)

    Article  Google Scholar 

  12. R. Olea: Geostatistics for Engineers and Earth Scientists (Kluwer Adacemic, Dordrecht 1999)

    Google Scholar 

  13. A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Happold, H. Herman, R. Mandelbaum, T. Pilarki, P. Rander, S. Thayer, N. Vallidi, R. Warner: Toward reliable off road autonomous vehicles operating in challenging environments, Int. J. Robot. Res. 25(5-6), 449–483 (2006)

    Article  Google Scholar 

  14. I.S. Kweon, T. Kanade: High-resolution terrain map from multiple sensor data, IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 278–292 (1992)

    Article  Google Scholar 

  15. M. Montemerlo, S. Thrun: A multi-resolution pyramid for outdoor robot terrain perception, Proc. AAAI Nat. Conf. Artif. Intell. (San Jose 2004)

    Google Scholar 

  16. R. Triebel, P. Pfaff, W. Burgard: Multi-level surface maps for outdoor terrain mapping and loop closing, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2006)

    Google Scholar 

  17. C. Wellington, A. Courville, A. Stentz: A generative model of terrain for autonomous navigation in vegetation, Int. J. Robot. Res. 25(12), 1287–1304 (2006)

    Article  Google Scholar 

  18. P. Pfaff, R. Triebel, W. Burgard: An efficient extension to elevation maps for outdoor terrain mapping and loop closing, Int. J. Robot. Res. 26(2), 217–230 (2007)

    Article  Google Scholar 

  19. N. Fairfield, G. Kantor, D. Wettergreen: Real-time SLAM with octree evidence grids for exploration in underwater tunnels, J. Field Robot. 24(1), 3–21 (2007)

    Article  Google Scholar 

  20. A. Foessel: Scene Modeling from Motion-Free Radar Sensing. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 2002)

    Google Scholar 

  21. J.-F. Lalonde, N. Vandapel, M. Hebert: Data structure for efficient processing in 3-D, Proc. Robot. Sci. Syst. I (2005) p. 48

    Google Scholar 

  22. J. Leal: Stochastic Environment Representation. Ph.D. Thesis (The University of Sydney, Sydney 2003)

    Google Scholar 

  23. P. Heckbert, M. Garland: Optimal triangulation and quadric-based surface simplification, J. Comput. Geom. Theory Appl. 14(1-3), 49–65 (1999)

    MATH  MathSciNet  Google Scholar 

  24. A. Akbarzadeh: Towards urban 3d reconstruction from video, Int. Symp. 3D Data Proc. Visualization Transmission (2006)

    Google Scholar 

  25. C. Frueh, S. Jain, A. Zakhor: Data processing algorithms for generating textured 3d building facade meshes from laser scans and camera images, Int. J. Comput. Vis. 61(2), 159–184 (2005)

    Article  Google Scholar 

  26. I. Stamos, P. Allen: Geometry and texture recovery of scenes of large scales, Comput. Vis. Image Underst. 88, 94–118 (2002)

    Article  MATH  Google Scholar 

  27. D. Gennery: Traversability analysis and path planning for a planetary rover, Auton. Robot. 6, 131–146 (1999)

    Article  Google Scholar 

  28. B. Sofman, E. Lin, J. Bagnell, J. Cole, N. Vandapel, A. Stentz: Improving robot navigation through self-supervised online learning, J. Field Robot. 23(12), 1059–1075 (2006)

    Article  Google Scholar 

  29. D. Ferguson, A. Stentz: The delayed D* algorithm for efficient path replanning, Proc. IEEE Int. Conf. Robot. Autom. (2005)

    Google Scholar 

  30. D. Ferguson, A. Stentz: Field D*: An interpolation-based path planner and replanner, Proc. Int. Symp. Robot. Res. (ISRR) (2005)

    Google Scholar 

  31. M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun: Anytime dynamic a*: An anytime, replanning algorithm, Proc. Int. Conf. Autom. Planning Scheduling (ICAPS) (2005)

    Google Scholar 

  32. D. Stavens, S. Thrun: A self-supervised terrain roughness estimator for off-road autonomous driving, Uncertainty Artif. Intell. (Boston 2006)

    Google Scholar 

  33. A. Angelova, L. Matthies, D. Helmick, P. Perona: Slip prediction using visual information, Proc. Robot. Sci. Syst. (Philadelphia 2006)

    Google Scholar 

  34. D. Kim, J. Sun, S. Oh, J. Rehg, A. Bobick: Traversability classification using unsupervised on-line visual learning for outdoor robot navigation, IEEE Int. Conf. Robot. Autom. (2006)

    Google Scholar 

  35. S. Thrun, M. Montemerlo, A. Aron: Probabilistic terrain analysis for high-speed desert driving, Robotics Science and System Conference (2005)

    Google Scholar 

  36. R. Murrieta-Cid, C. Parra, M. Devy: Visual navigation in natural environments: from range and color data to a landmark-based model, Auton. Robot. 13(2), 143–168 (2002)

    Article  MATH  Google Scholar 

  37. D. Asmar, J. Zelek, S. Abdallah: Tree trunks as landmarks for outdoor vision SLAM, Proc. Conf. Comp. Vision Pattern Recognition Workshop (2006)

    Google Scholar 

  38. I. Posner, D. Schroeter, P. Newman: Using scene similarity for place labelling, Int. Symp. Exp. Robot. (2006)

    Google Scholar 

  39. A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin: Context-based vision system for place and object recognition, IEEE Int. Conf. Comput. Vis. (ICCV) (2003)

    Google Scholar 

  40. D. Bradley, S. Thayer, A. Stentz, P. Rander: Vegetation detection for mobile robot navigation, Tech. Rep. CMU-RI-TR-04-12, Robotics Institute (Carnegie Mellon University, Pittsburgh 2004)

    Google Scholar 

  41. S. Kumar, J. Guivant, H. Durrant-Whyte: Informative representations of unstructured environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2004)

    Google Scholar 

  42. S. Kumar, F. Ramos, B. Douillard, M. Ridley, H. Durrant-Whyte: A novel visual perception framework, Proc. 9th Int. Conf. Contr. Autom. Robot. Vision (2006)

    Google Scholar 

  43. F. Ramos, S. Kumar, B. Upcroft, H. Durrant-Whyte: Representing natural objects in unstructured environments, Neural Inf. Proc. Syst. (NIPS) (2005)

    Google Scholar 

  44. C. Pantofaru, R. Unnikrishnan, M. Hebert: Toward generating labeled maps from color and range data for robot navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003)

    Google Scholar 

  45. J.F. Lalonde, N. Vandapel, D. Huber, M. Hebert: Natural terrain classification using three-dimensional ladar data for ground robot mobility, J. Field Robot. 23(10), 839–861 (2006)

    Article  Google Scholar 

  46. M. Devy, R. Chatila, P. Fillatreau, S. Lacroix, F. Nashashibi: On autonomous navigation in a natural environment, Robot. Auton. Syst. 16(1), 5–16 (1995)

    Article  Google Scholar 

  47. R. Manduchi, A. Castano, A. Talukder, L. Matthies: Obstacle detection and terrain classification for autonomous off-road navigation, Auton. Robot. 18(1), 81–102 (2005)

    Article  Google Scholar 

  48. D. Huber, M. Hebert: 3d modeling using a statistical sensor model and stochastic search, Proc. IEEE Conf. Comput. Vision Pattern Recognition (CVPR) (2003) pp. 858–865

    Google Scholar 

  49. S. Balakirsky, A. Lacaze: World modeling and behavior generation for autonomous ground vehicles, IEEE Int. Conf. Robot. Autom. (2000)

    Google Scholar 

  50. A. Lacaze, K. Murphy, M. Delgiorno: Autonomous mobility for the demo III experimental unmanned vehicles, Proc. AUVSI (2002)

    Google Scholar 

  51. P. Bellutta, R. Manduchi, L. Matthies, K. Owens, A. Rankin: Terrain perception for demo III, Proc. Intell. Vehicles Symp. (2000)

    Google Scholar 

  52. J.F. Lalonde, R. Unnikrishnan, N. Vandapel, M. Hebert: Scale selection for classification of point-sampled 3-d surfaces, 5th Int. Conf. 3-D Digital Imaging Modeling (3DIM 2005) (2005)

    Google Scholar 

  53. J. Macedo, R. Manduchi, L. Matthies: Ladar-based discrimination of grass from obstacles for autonomous navigation, Proc. 7th Int. Symp. Exp. Robot. (ISER) (2000)

    Google Scholar 

  54. D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, A. Ng: Discriminative learning of Markov random fields for segmentation of 3-d scan data, Proc. Conf. Comp. Vision Pattern Recognition (2005)

    Google Scholar 

  55. R. Triebel, K. Kersting, W. Burgard: Robust 3d scan point classification using associative Markov networks, IEEE Int. Conf. Robot. Autom. (2006)

    Google Scholar 

  56. H. Chen, P. Meer, D. Tyler: Robust regression for data with multiple structures, IEEE Int. Conf. Comput. Vision Pattern Recognition (2001)

    Google Scholar 

  57. R. Unnikrishnan, M. Hebert: Robust extraction of multiple structures from non-uniformly sampled data, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003)

    Google Scholar 

  58. D. Wolf, G. Sukhatme, D. Fox, W. Burgard: Autonomous terrain mapping and classification using hidden Markov models, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2005)

    Google Scholar 

  59. C. Olson, L. Matthies, J. Wright, R. Li, K. Di: Visual terrain mapping for Mars exploration, Comput. Vis. Understand. 105, 73–85 (2007)

    Article  Google Scholar 

  60. J. Nieto, J. Guivant, E. Nebot: The hybrid metric maps (hymms): a novel map representation for denseSLAM, IEEE Int. Conf. Robot. Autom. (2004)

    Google Scholar 

  61. F. Ramos, J. Nieto, H. Durrant-Whyte: Recognising and modelling landmarks to close loops in outdoor SLAM, IEEE Int. Conf. Robot. Autom. (2007)

    Google Scholar 

  62. D. Hähnel, D. Schulz, W. Burgard: Mobile robot mapping in populated environments, Adv. Robot. 17(7), 579–598 (2003)

    Article  Google Scholar 

  63. C.-C. Wang, C. Thorpe, S. Thrun: Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003)

    Google Scholar 

  64. P. Biber, T. Duckett: Dynamic maps for long-term operation of mobile service robots, Proc. Robot. Sci. Syst. (RSS) (2005)

    Google Scholar 

  65. C. Stachniss, W. Burgard: Mobile robot mapping and localization in non-static environments, Proc. Nat. Conf. Artif. Intell. (Pittsburgh 2005)

    Google Scholar 

  66. D. Hähnel, R. Triebel, W. Burgard, S. Thrun: Map building with mobile robots in dynamic environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003)

    Google Scholar 

  67. R. Siegwart, I. Nourbakhsh: Introduction to Autonomous Mobile Robots (MIT-Press, Cambridge 2001)

    Google Scholar 

  68. S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)

    MATH  Google Scholar 

  69. H. Samet: Foundations of Multidimensional and Metric Data Structures (Elsevier, Amsterdam 2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfram Burgard Prof or Martial Hebert Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Burgard, W., Hebert, M. (2008). World Modeling. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics