Abstract
In this chapter we describe popular ways to represent the environment of a mobile robot. For indoor environments, which are often stored using two-dimensional representations, we discuss occupancy grids, line maps, topological maps, and landmark-based representations. Each of these techniques has its own advantages and disadvantages. Whilst occupancy grid maps allow for quick access and can efficiently be updated, line maps are more compact. Also landmark-based maps can efficiently be updated and maintained, however, they do not readily support navigation tasks such as path planning like topological representations do.
Additionally, we discuss approaches suited for outdoor terrain modeling. In outdoor environments, the flat-surface assumption underling many mapping techniques for indoor environments is no longer valid. A very popular approach in this context are elevation and variants maps, which store the surface of the terrain over a regularly spaced grid. Alternatives to such maps are point clouds, meshes, or three-dimensional grids, which provide a greater flexibility but have higher storage demands.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- EKF:
-
extended Kalman filter
- EM:
-
expectation maximization
- SLAM:
-
simultaneous localization and mapping
References
H.P. Moravec, A.E. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (1985)
H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun: Principles of Robot Motion: Theory, Algorithms and Implementation (MIT Press, Cambridge 2005)
D.H. Douglas, T.K. Peucker: Algorithms for the reduction of the number of points required to represent a line or its caricature, Cdn. Cartogr. 10(2), 112–122 (1973)
D. Sack, W. Burgard: A comparison of methods for line extraction from range data, Proc. IVAC Symp. Intell. Auton. Vehicles (IAV) (2004)
P. Beeson, N.K. Jong, B. Kuipers: Towards autonomous topological place detection using the extended Voronoi graph, IEEE Int. Conf. Robot. Autom. (ICRA) (2005)
B.J. Kuipers, Y.-T. Byun: A robust qualitative method for spatial learning in unknown environments, Proc. Nat. Conf. Artif. Intell. (AAAI) (1988)
H. Choset, K. Nagatani: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization, IEEE Trans. Robot. Autom. 17(2), 125–137 (2001)
M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit: FastSLAM: a factored solution to the simultaneous localization and mapping problem, Proc. Nat. Conf. Artif. Intell. (AAAI) (2002)
S. Thrun: Robotic mapping: a survey. In: Exploring Artificial Intelligence in the New Millenium, ed. by G. Lakemeyer, B. Nebel (Morgan Kaufmann, New York 2002)
M. Maimone, P. Leger, J. Biesiadecki: Overview of the Mars exploration roversʼ autonomous mobility and vision capabilities, IEEE Int. Conf. Robot. Autom. (2007)
S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, R. Chatila: Autonomous rover navigation on unknown terrains: functions and integration, Int. J. Robot. Res. 21(10-11), 917–942 (2002)
R. Olea: Geostatistics for Engineers and Earth Scientists (Kluwer Adacemic, Dordrecht 1999)
A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Happold, H. Herman, R. Mandelbaum, T. Pilarki, P. Rander, S. Thayer, N. Vallidi, R. Warner: Toward reliable off road autonomous vehicles operating in challenging environments, Int. J. Robot. Res. 25(5-6), 449–483 (2006)
I.S. Kweon, T. Kanade: High-resolution terrain map from multiple sensor data, IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 278–292 (1992)
M. Montemerlo, S. Thrun: A multi-resolution pyramid for outdoor robot terrain perception, Proc. AAAI Nat. Conf. Artif. Intell. (San Jose 2004)
R. Triebel, P. Pfaff, W. Burgard: Multi-level surface maps for outdoor terrain mapping and loop closing, IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2006)
C. Wellington, A. Courville, A. Stentz: A generative model of terrain for autonomous navigation in vegetation, Int. J. Robot. Res. 25(12), 1287–1304 (2006)
P. Pfaff, R. Triebel, W. Burgard: An efficient extension to elevation maps for outdoor terrain mapping and loop closing, Int. J. Robot. Res. 26(2), 217–230 (2007)
N. Fairfield, G. Kantor, D. Wettergreen: Real-time SLAM with octree evidence grids for exploration in underwater tunnels, J. Field Robot. 24(1), 3–21 (2007)
A. Foessel: Scene Modeling from Motion-Free Radar Sensing. Ph.D. Thesis (Carnegie Mellon University, Pittsburgh 2002)
J.-F. Lalonde, N. Vandapel, M. Hebert: Data structure for efficient processing in 3-D, Proc. Robot. Sci. Syst. I (2005) p. 48
J. Leal: Stochastic Environment Representation. Ph.D. Thesis (The University of Sydney, Sydney 2003)
P. Heckbert, M. Garland: Optimal triangulation and quadric-based surface simplification, J. Comput. Geom. Theory Appl. 14(1-3), 49–65 (1999)
A. Akbarzadeh: Towards urban 3d reconstruction from video, Int. Symp. 3D Data Proc. Visualization Transmission (2006)
C. Frueh, S. Jain, A. Zakhor: Data processing algorithms for generating textured 3d building facade meshes from laser scans and camera images, Int. J. Comput. Vis. 61(2), 159–184 (2005)
I. Stamos, P. Allen: Geometry and texture recovery of scenes of large scales, Comput. Vis. Image Underst. 88, 94–118 (2002)
D. Gennery: Traversability analysis and path planning for a planetary rover, Auton. Robot. 6, 131–146 (1999)
B. Sofman, E. Lin, J. Bagnell, J. Cole, N. Vandapel, A. Stentz: Improving robot navigation through self-supervised online learning, J. Field Robot. 23(12), 1059–1075 (2006)
D. Ferguson, A. Stentz: The delayed D* algorithm for efficient path replanning, Proc. IEEE Int. Conf. Robot. Autom. (2005)
D. Ferguson, A. Stentz: Field D*: An interpolation-based path planner and replanner, Proc. Int. Symp. Robot. Res. (ISRR) (2005)
M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, S. Thrun: Anytime dynamic a*: An anytime, replanning algorithm, Proc. Int. Conf. Autom. Planning Scheduling (ICAPS) (2005)
D. Stavens, S. Thrun: A self-supervised terrain roughness estimator for off-road autonomous driving, Uncertainty Artif. Intell. (Boston 2006)
A. Angelova, L. Matthies, D. Helmick, P. Perona: Slip prediction using visual information, Proc. Robot. Sci. Syst. (Philadelphia 2006)
D. Kim, J. Sun, S. Oh, J. Rehg, A. Bobick: Traversability classification using unsupervised on-line visual learning for outdoor robot navigation, IEEE Int. Conf. Robot. Autom. (2006)
S. Thrun, M. Montemerlo, A. Aron: Probabilistic terrain analysis for high-speed desert driving, Robotics Science and System Conference (2005)
R. Murrieta-Cid, C. Parra, M. Devy: Visual navigation in natural environments: from range and color data to a landmark-based model, Auton. Robot. 13(2), 143–168 (2002)
D. Asmar, J. Zelek, S. Abdallah: Tree trunks as landmarks for outdoor vision SLAM, Proc. Conf. Comp. Vision Pattern Recognition Workshop (2006)
I. Posner, D. Schroeter, P. Newman: Using scene similarity for place labelling, Int. Symp. Exp. Robot. (2006)
A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin: Context-based vision system for place and object recognition, IEEE Int. Conf. Comput. Vis. (ICCV) (2003)
D. Bradley, S. Thayer, A. Stentz, P. Rander: Vegetation detection for mobile robot navigation, Tech. Rep. CMU-RI-TR-04-12, Robotics Institute (Carnegie Mellon University, Pittsburgh 2004)
S. Kumar, J. Guivant, H. Durrant-Whyte: Informative representations of unstructured environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2004)
S. Kumar, F. Ramos, B. Douillard, M. Ridley, H. Durrant-Whyte: A novel visual perception framework, Proc. 9th Int. Conf. Contr. Autom. Robot. Vision (2006)
F. Ramos, S. Kumar, B. Upcroft, H. Durrant-Whyte: Representing natural objects in unstructured environments, Neural Inf. Proc. Syst. (NIPS) (2005)
C. Pantofaru, R. Unnikrishnan, M. Hebert: Toward generating labeled maps from color and range data for robot navigation, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003)
J.F. Lalonde, N. Vandapel, D. Huber, M. Hebert: Natural terrain classification using three-dimensional ladar data for ground robot mobility, J. Field Robot. 23(10), 839–861 (2006)
M. Devy, R. Chatila, P. Fillatreau, S. Lacroix, F. Nashashibi: On autonomous navigation in a natural environment, Robot. Auton. Syst. 16(1), 5–16 (1995)
R. Manduchi, A. Castano, A. Talukder, L. Matthies: Obstacle detection and terrain classification for autonomous off-road navigation, Auton. Robot. 18(1), 81–102 (2005)
D. Huber, M. Hebert: 3d modeling using a statistical sensor model and stochastic search, Proc. IEEE Conf. Comput. Vision Pattern Recognition (CVPR) (2003) pp. 858–865
S. Balakirsky, A. Lacaze: World modeling and behavior generation for autonomous ground vehicles, IEEE Int. Conf. Robot. Autom. (2000)
A. Lacaze, K. Murphy, M. Delgiorno: Autonomous mobility for the demo III experimental unmanned vehicles, Proc. AUVSI (2002)
P. Bellutta, R. Manduchi, L. Matthies, K. Owens, A. Rankin: Terrain perception for demo III, Proc. Intell. Vehicles Symp. (2000)
J.F. Lalonde, R. Unnikrishnan, N. Vandapel, M. Hebert: Scale selection for classification of point-sampled 3-d surfaces, 5th Int. Conf. 3-D Digital Imaging Modeling (3DIM 2005) (2005)
J. Macedo, R. Manduchi, L. Matthies: Ladar-based discrimination of grass from obstacles for autonomous navigation, Proc. 7th Int. Symp. Exp. Robot. (ISER) (2000)
D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, A. Ng: Discriminative learning of Markov random fields for segmentation of 3-d scan data, Proc. Conf. Comp. Vision Pattern Recognition (2005)
R. Triebel, K. Kersting, W. Burgard: Robust 3d scan point classification using associative Markov networks, IEEE Int. Conf. Robot. Autom. (2006)
H. Chen, P. Meer, D. Tyler: Robust regression for data with multiple structures, IEEE Int. Conf. Comput. Vision Pattern Recognition (2001)
R. Unnikrishnan, M. Hebert: Robust extraction of multiple structures from non-uniformly sampled data, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2003)
D. Wolf, G. Sukhatme, D. Fox, W. Burgard: Autonomous terrain mapping and classification using hidden Markov models, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2005)
C. Olson, L. Matthies, J. Wright, R. Li, K. Di: Visual terrain mapping for Mars exploration, Comput. Vis. Understand. 105, 73–85 (2007)
J. Nieto, J. Guivant, E. Nebot: The hybrid metric maps (hymms): a novel map representation for denseSLAM, IEEE Int. Conf. Robot. Autom. (2004)
F. Ramos, J. Nieto, H. Durrant-Whyte: Recognising and modelling landmarks to close loops in outdoor SLAM, IEEE Int. Conf. Robot. Autom. (2007)
D. Hähnel, D. Schulz, W. Burgard: Mobile robot mapping in populated environments, Adv. Robot. 17(7), 579–598 (2003)
C.-C. Wang, C. Thorpe, S. Thrun: Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003)
P. Biber, T. Duckett: Dynamic maps for long-term operation of mobile service robots, Proc. Robot. Sci. Syst. (RSS) (2005)
C. Stachniss, W. Burgard: Mobile robot mapping and localization in non-static environments, Proc. Nat. Conf. Artif. Intell. (Pittsburgh 2005)
D. Hähnel, R. Triebel, W. Burgard, S. Thrun: Map building with mobile robots in dynamic environments, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2003)
R. Siegwart, I. Nourbakhsh: Introduction to Autonomous Mobile Robots (MIT-Press, Cambridge 2001)
S. Thrun, W. Burgard, D. Fox: Probabilistic Robotics (MIT Press, Cambridge 2005)
H. Samet: Foundations of Multidimensional and Metric Data Structures (Elsevier, Amsterdam 2006)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry
Burgard, W., Hebert, M. (2008). World Modeling. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-30301-5_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23957-4
Online ISBN: 978-3-540-30301-5
eBook Packages: EngineeringEngineering (R0)