Skip to main content

Rehabilitation and Health Care Robotics

  • Reference work entry
Springer Handbook of Robotics

Abstract

The field of rehabilitation robotics develops robotic systems that assist persons who have a disability with necessary activities, or that provide therapy for persons seeking to improve physical or cognitive function. This chapter will discuss both of these domains and provide descriptions of the major achievements of the field over its short history. Specifically, after providing background information on world demographics (Sect. 53.1.2) and the history (Sect. 53.1.3) of the field, Sect. 53.2 describes physical therapy and training robots, and Sect. 53.3 describes robotic aids for people with disabilities. Section 53.4 then briefly discusses recent advances in smart prostheses and orthoses that are related to rehabilitation robotics. Finally, Sect. 53.5 provides an overview of recent work in diagnosis and monitoring for rehabilitation as well as other health-care issues. At the conclusion of this chapter, the reader will be familiar with the history of rehabilitation robotics and its primary accomplishments, and will understand the challenges the field faces in the future as it seeks to improve health care and the well-being of persons with disabilities. In this chapter, we will describe an application of robotics that may in the future touch many of us in an acutely personal way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADL:

activities of daily living

CEA:

Commission de Energie Atomique

CP:

cerebral palsy

CP:

closest point

CP:

complementarity problem

DARPA:

Defense Advanced Research Projects Agency

DOF:

degree of freedom

DSO:

Defense Sciences Office

DeVAR:

desktop vocational assistant robot

EEG:

electroencephalogram

EMG:

electromyography

EPP:

extended physiological proprioception

ES:

electrical stimulation

FNS:

functional neural stimulation

I/O:

input/output

IEEE:

Institute of Electrical and Electronics Engineers

ISO:

International Organization for Standardization

NIDRR:

National Institute on Disability and Rehabilitation Research

RERC:

Rehabilitation Engineering Research Center on Rehabilitation Robotics

RFID:

radiofrequency identification

SCARA:

selective compliance assembly robot arm

SCI:

spinal cord injury

US:

ultrasound

VRML:

virtual reality modeling language

References

  1. L. Leifer: Rehabilitative robots. In: Robotics Age: In the Beginning selected from Robotics Age Magazine, ed. by C. Helmers (Hayden, Hasbrouck 1981) pp. 227–241

    Google Scholar 

  2. M. Kassler: Introduction to the special issue on robotics for health care, Robotica 11, 493–494 (1993)

    Google Scholar 

  3. H.F.M. Van der Loos: VA/Stanford rehabilitation robotics research and development program: lessons learned in the application of robotics technology to the field of rehabilitation, IEEE Trans. Rehab. Eng. 3, 46–55 (1995)

    Google Scholar 

  4. J.L. Patton, M.E. Phillips-Stoykov, M. Stojakovich, F.A. Mussa-Ivaldi: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors, Exp. Brain Res. 168, 368–383 (2006)

    Google Scholar 

  5. J. Emken, D. Reinkensmeyer: Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification, IEEE Trans. Neural Syst. Rehab. Eng. 99, 1–7 (2005)

    Google Scholar 

  6. H.F.M. Van der Loos, R. Mahoney, C. Ammi: Great expectations for rehabilitation mechatronics in the coming decade. In: Advances in Rehabilitation Robotics, Lect. Notes Contr. Inf. Sci. 306, 427–433 (2004)

    Google Scholar 

  7. K. Corker, J.H. Lyman, S. Sheredos: A preliminary evaluation of remote medical manipulators, Bull. Prosth. Res. 10, 107–134 (1979)

    Google Scholar 

  8. M. Hillman: Rehabilitation robotics from past to present – A historical perspective. In: Advances in Rehabilitation Robotics, Lect. Notes Contr. Inf. Sci. 306, 25–44 (2004)

    Google Scholar 

  9. W. Seamone, G. Schmeisser: Early clinical evaluation of a robot arm/work table system for spinal cord injured persons, J. Rehab. Res. Dev. 22, 38–57 (1985)

    Google Scholar 

  10. J. Guittet, H.H. Kwee, N. Quetin, J. Yelon: The SPARTACUS telethesis: manipulator control studies, Bull. Prosth. Res. 10, 69–105 (1979)

    Google Scholar 

  11. J. Hammel, K. Hall, D.S. Lees, L.J. Leifer, H.F.M. Van der Loos, I. Perkash, R. Crigler: Clinical evaluation of a desktop robotic assistant, J. Rehab. Res. Dev. 26, 1–16 (1989)

    Google Scholar 

  12. J.M. Hammel, H.F.M. Van der Loos, I. Perkash: Evaluation of a vocational robot with a quadriplegic employee, Arch. Phys. Med. Rehabil. 73, 683–693 (1992)

    Google Scholar 

  13. H.F.M. Van der Loos, S.J. Michalowski, L.J. Leifer: Design of an omnidirectional mobile robot as a manipulation aid for the severely disabled. In: Interactive Robotic Aids, ed. by R. Foulds (World Rehabilitation Fund, New York 1986) pp. 61–63

    Google Scholar 

  14. J.J. Wagner, M. Wickizer, H.F.M. Van der Loos, L.J. Leifer: User testing and design iteration of the ProVAR user interface, presented at 8th IEEE International Workshop on Robot and Human Interaction: RO-MANʼ99 (1999)

    Google Scholar 

  15. M. Busnel, R. Cammoun, F. Coulon-Lauture, J.-M. Detriche, G. Le Claire, B. Lesigne: The robotized workstation MASTER for users with tetraplegia: Description and evaluation, J. Rehab. Res. Dev. 36, 217–229 (1999)

    Google Scholar 

  16. R. Gelin, B. Lesigne, M. Busnel, J.P. Michel: The first moves of the AFMASTER workstation, Adv. Robot. 14, 639–649 (2001)

    Google Scholar 

  17. M. Topping: The development of Handy 1, a rehabilitation robotic system to assist the severely disabled, Ind. Robot. 25, 316–320 (1998)

    Google Scholar 

  18. R.M. Mahoney: The Raptor wheelchair robot system. In: Integration of Assistive Technology in the Information Age (IOS, Amsterdam 2001) pp. 135–141

    Google Scholar 

  19. H.H. Kwee: Integrated control of MANUS manipulator and wheelchair enhanced by environmental docking, Robotica 16, 491–498 (2000)

    Google Scholar 

  20. Z. Bien, M.J. Chung, P.H. Chang, D.S. Kwon, D.J. Kim, J.S. Han, J.H. Kim, D.H. Kim, H.S. Park, S.H. Kang: Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units, Auton. Robot. 16, 165–191 (2004)

    Google Scholar 

  21. R.C. Simpson, S.P. Levine, D.A. Bell, L. Jaros, Y. Koren, J. Borenstein: NavChair: An assistive wheelchair navigation system with automatic adaptation. In: Assistive Technology and AI, Lect. Notes Artif. Intell. 1458, 235–255 (1998)

    Google Scholar 

  22. R.C. Simpson, D. Poirot, F. Baxter: The Hephaestus smart wheelchair system, IEEE Trans. Neural Syst. Rehab. Eng. 10, 118–122 (2002)

    Google Scholar 

  23. R. Krukowski: BioDex Muscle exercise and rehabilitation apparatus, US Patent No. 4765315 (Int. A63B 2300) (1986)

    Google Scholar 

  24. D. Khalili, M. Zomlefer: An intelligent robotic system for rehabilitation of joints and estimation of body segment parameters, IEEE Trans. Biomed. Eng. 35, 138–146 (1988)

    Google Scholar 

  25. M.P. Dijkers, P.C. deBear, R.F. Erlandson, K.A. Kristy, D.M. Geer, A. Nichols: Patient and staff acceptance of robotic technology in occupational therapy: a pilot study, J. Rehab. Res. 28, 33–44 (1991)

    Google Scholar 

  26. K. Dautenhahn, I. Werry: Towards interaction robots in autism therapy: background, motivation, and challenges, Pragmact. Cognit. 12, 1–35 (2004)

    Google Scholar 

  27. T. Shibata, T. Mitsui, K. Wada, K. Tanie: Psychophysiological effects by interaction with mental commit robot, J. Robot. Mechatron. 14, 13–19 (2002)

    Google Scholar 

  28. L. Sawaki: Use-dependent plasticity of the human motor cortex in health and disease, IEEE Eng. Med. Biol. Mag. 24, 36–39 (2005)

    Google Scholar 

  29. J.R. Wolpaw, A.M. Tennissen: Activity-dependent spinal cord plasticity in health and disease, Annu. Rev. Neurosci. 24, 807–843 (2001)

    Google Scholar 

  30. K.M. Baldwin, F. Haddad: Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms, Am. J. Phys. Med. Rehabil. 81, S40–S51 (2002)

    Google Scholar 

  31. J.L. Emken, R. Benitez, D.J. Reinkensmeyer: Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed, J. Neuroeng. Rehab. 4, 8 (2007)

    Google Scholar 

  32. B.H. Dobkin: Neurologic Rehabilitation (F. A. Davis, Philadelphia 1996)

    Google Scholar 

  33. H.I. Krebs, N. Hogan, M.L. Aisen, B.T. Volpe: Robot-aided neurorehabilitation, IEEE Trans. Rehabil. Eng. 6, 75–87 (1998)

    Google Scholar 

  34. S.P. Buerger, H.I. Krebs, N. Hogan: Characterization and control of a screw-driven robot for neurorehabilitation, Proceedings of the 2001 IEEE International Conference on Control Applications pp. 388–394 (2001)

    Google Scholar 

  35. D.J. Williams, H.I. Krebs, N. Hogan: A robot for wrist rehabilitation, Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2, (2001) pp. 1336–1339

    Google Scholar 

  36. L. Masia, H.I. Krebs, P. Cappa, N. Hogan: Whole-arm rehabilitation following stroke: Hand module, BioRob 2006. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics: February 20-22 (2006) pp. 1085–1089

    Google Scholar 

  37. J. Stein, H.I. Krebs, W.R. Frontera, S. Fasoli, R. Hughes, N. Hogan: Comparison of two techniques of robot-aided upper limb exercise training after stroke, Am. J. Phys. Med. Rehabil. 83, 720–728 (2004)

    Google Scholar 

  38. H. Krebs, J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannekleiv, B. Volpe, N. Hogan: Rehabilitation robotics: performance-based progressive robot-assisted therapy, Auton. Robot. 15, 7–20 (2003)

    Google Scholar 

  39. M.L. Aisen, H.I. Krebs, N. Hogan, F. McDowell, B. Volpe: The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke, Arch. Neurol. 54, 443–446 (1997)

    Google Scholar 

  40. S. Fasoli, H. Krebs, J. Stein, W. Frontera, N. Hogan: Effects of robotic therapy on motor impairment and recovery in chronic stroke, Arch. Phys. Med. Rehabil. 84, 477–482 (2003)

    Google Scholar 

  41. J.J. Daly, N. Hogan, E.M. Perepezko, H.I. Krebs, J.M. Rogers, K.S. Goyal, M.E. Dohring, E. Fredrickson, J. Nethery, R.L. Ruff: Response to upper-limb robotics and functional neuromuscular stimulation following stroke, J. Rehabil. Res. Dev. 42, 723–736 (2005)

    Google Scholar 

  42. P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, H.F.M. Van der Loos: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function following stroke, Arch. Phys. Med. Rehabil. 83, 952–959 (2002)

    Google Scholar 

  43. P.S. Lum, C.G. Burgar, H.F.M. Van der Loos, P.C. Shor, M. Majmundar, R. Yap: MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study, J. Rehab. Res. Dev. 43, 631–642 (2006)

    Google Scholar 

  44. L.E. Kahn, M.L. Zygman, W.Z. Rymer, D.J. Reinkensmeyer: Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study, J. Neuroeng. Neurorehab. 3, 12 (2006)

    Google Scholar 

  45. P.S. Lum, D.J. Reinkensmeyer, S.L. Lehman: Robotic assist devices for bimanual physical therapy: preliminary experiments, IEEE Trans. Rehab. Eng. 1, 185–191 (1993)

    Google Scholar 

  46. S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, M.L. Lingnau: Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers, Stroke 36, 1960–1966 (2005)

    Google Scholar 

  47. D. Reinkensmeyer, J. Emken, S. Cramer: Robotics, motor learning, and neurologic recovery, Ann. Rev. Biomed. Eng. 6, 497–525 (2004)

    Google Scholar 

  48. F. Amirabdollahian, E. Gradwell, R. Loureiro, W. Harwin: Effects of the GENTLE/S robot mediated therapy on the outcome of upper limb rehabilitation post-stroke: Analysis of the Battle Hospital data, Proceedings of the 8th International Conference on Rehabilitation Robotics, Daejeon, Korea (2003) pp. 55–58

    Google Scholar 

  49. F. Amirabdollahian, R. Loureiro, E. Gradwell, C. Collin, W. Harwin, G. Johnson: Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy, J. Neuroeng. Rehab. 19, 4 (2007)

    Google Scholar 

  50. A.S. Merians, H. Poizner, R. Boian, G. Burdea, S. Adamovich, M. Kuttuva, A. Merians, M. Bouzit, J. Lewis, D. Fensterheim: Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? The Rutgers Arm, a rehabilitation system in virtual reality: a pilot study, Neurorehab. Neural Repair 20, 252–267 (2006)

    Google Scholar 

  51. R. Colombo, F. Pisano, S. Micera, A. Mazzone, C. Delconte, M. Carrozza, P. Dario, G. Minuco: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 311–324 (2005)

    Google Scholar 

  52. R.J. Sanchez, J. Liu, S. Rao, P. Shah, R. Smith, S.C. Cramer, J.E. Bobrow, D.J. Reinkensmeyer: Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment, IEEE Trans. Neural Syst. Rehab. Eng. 14, 378–389 (2006)

    Google Scholar 

  53. S. Masiero, A. Celia, G. Rosati, M. Armani: Robotic-assisted rehabilitation of the the upper limb after acute stroke, Arch. Phys. Med. Rehabil. 88, 142–149 (2007)

    Google Scholar 

  54. G. Fazekas, M. Horvath, A. Toth: A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis, Int. J. Rehabil. Res. 29, 251–254 (2006)

    Google Scholar 

  55. T. Nef, R. Riener: ARMin – Design of a novel arm rehabilitation robot, Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics, June 28-July 1, Chicago, Illinois (2005) pp. 57–60

    Google Scholar 

  56. E. Wolbrecht, J. Leavitt, D. Reinkensmeyer, J. Bobrow: Control of a pneumatic orthosis for upper extremity stroke rehabilitation, IEEE Engineering in Medicine and Biology Conference, New York (2006) pp. 2687 - 2693

    Google Scholar 

  57. J.L. Patton, G. Dawe, C. Scharver, F.A. Mussa-Ivaldi, R. Kenyon: Robotics and virtual reality: the development of a life-sized 3-D system for the rehabilitation of motor function, 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2004) pp. 4840–4843

    Google Scholar 

  58. H. Huang, J. He: Utilization of biomechanical modeling in design of robotic arm for rehabilitation of stroke patients, 26th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 2718–2721 (2004)

    Google Scholar 

  59. D. Reinkensmeyer, C. Pang, J. Nessler, C. Painter: Web-based telerehabilitation for the upper-extremity after stroke, IEEE Trans. Neural Sci. Rehab. Eng. 10, 1–7 (2002)

    Google Scholar 

  60. M.J. Johnson, H.F.M. Van der Loos, C.G. Burgar, P. Shor, L.J. Leifer: Experimental results using force-feedback cueing in robot-assisted stroke therapy, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 335–348 (2005)

    Google Scholar 

  61. X. Feng, J. Winters: UniTherapy: a computer-assisted motivating neurorehabilitation platform for teleassessment and remote therapy, 2005 IEEE 9th International Conference on Rehabilitation Robotics (2005) pp. 349–352

    Google Scholar 

  62. H. Sugarman, E. Dayan, A. Weisel-Eichler, J. Tiran: The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach, Cyberpsychol. Behav. 9, 178–182 (2006)

    Google Scholar 

  63. M. Mulas, M. Folgheraiter, G. Gini: An EMG-controlled exoskeleton for hand rehabilitation, Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics, June 28-July 1, Chicago, Illinois (2005) pp. 371–374

    Google Scholar 

  64. C. Takahashi, L. Der-Yeghiaian, V.H. Le, S.C. Cramer: A robotic device for hand motor therapy after stroke, Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics, June 28-July 1, Chicago, Illinois (2005) pp. 17–20

    Google Scholar 

  65. T. Kline, D.G. Kamper, B.D. Schmit: Control system for pneumatically controlled glove to assist in grasp activities, Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics, June 28-July 1, Chicago, Illinois (2005) pp. 78–81

    Google Scholar 

  66. B.R. Brewer, M. Fagan, R.L. Klatzky, Y. Matsuoka: Perceptual limits for a robotic rehabilitation environment using visual feedback distortion, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 1–11 (2005)

    Google Scholar 

  67. J.L. Patton, M. Kovic, F.A. Mussa-Ivaldi: Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis, J. Rehabil. Res. Dev. 43, 643–656 (2006)

    Google Scholar 

  68. R.G. Lovely, R.J. Gregor, R.R. Roy, V.R. Edgerton: Effects of training on the recovery of full weight-bearing stepping in the adult spinal cat, Exp. Neurol. 92, 421–435 (1986)

    Google Scholar 

  69. H. Barbeau, S. Rossignol: Recovery of locomotion after chronic spinalization in the adult cat, Brain Res. 412, 84–95 (1987)

    Google Scholar 

  70. M. Visintin, H. Barbeau, N. Korner-Bitensky, N. Mayo: A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation, Stroke 29, 1122–1128 (1998)

    Google Scholar 

  71. S. Hesse, C. Bertelt, M. Jahnke, A. Schaffrin, P. Baake, M. Malezic, K. Mauritz: Treadmill training with partial body weight support compared with physiotherapy in nonambulatory hemiparetic patients, Stroke 26, 976–981 (1995)

    Google Scholar 

  72. A. Wernig, A. Nanassy, S. Muller: Maintenance of locomotor abilities following Laufband (treadmill) therapy in para- and tetraplegic persons: follow-up studies, Spinal Cord 36, 744–749 (1998)

    Google Scholar 

  73. A.L. Behrman, S.J. Harkema: Locomotor training after human spinal cord injury: a series of case studies, Phys. Therapy 80, 688–700 (2000)

    Google Scholar 

  74. H. Barbeau: Locomotor training in neurorehabilitation: emerging rehabilitation concepts, Neurorehab. Neural Repair 17, 3–11 (2003)

    Google Scholar 

  75. B. Dobkin, D. Apple, H. Barbeau, M. Basso, A. Behrman, D. Deforge, J. Ditunno, G. Dudley, R. Elashoff, L. Fugate: Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI, Neurology 66, 484–493 (2006)

    Google Scholar 

  76. T.G. Hornby: Clinical and quantitative evaluation of robotic-assisted treadmill walking to retrain ambulation after spinal cord injury, Topics Spinal Cord Injury Rehab. 11, 1–17 (2005)

    Google Scholar 

  77. L. Nilsson, K. Fugl-Meyer, L. Kristensen, B. Sjölund, K. Sunnerhagen: Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground, Clin. Rehab. 15, 515–527 (2001)

    Google Scholar 

  78. C. Werner, A. Bardeleben, K. Mauritz, S. Kirker, S. Hesse: Treadmill training with partial body weight support and physiotherapy in stroke patients: a preliminary comparison, Eur. J. Neurol. 9, 639–644 (2002)

    Google Scholar 

  79. S. Hesse, C. Werner, H. Seibel, S. von Frankenberg, E. Kappel, S. Kirker, M. Kading: Treadmill training with partial body-weight support after total hip arthroplasty: A randomized controlled trial, Arch. Phys. Med. Rehabil. 84, 1767–1773 (2003)

    Google Scholar 

  80. T. Brown, J. Mount, B. Rouland, K. Kautz, R. Barnes, J. Kim: Body weight-supported treadmill training versus conventional gait training for people with chronic traumatic brain injury, J. Head Trauma Rehabil. 20, 402–415 (2005)

    Google Scholar 

  81. S. Hesse, D. Uhlenbrock: A mechanized gait trainer for restoration of gait, J. Rehab. Res. Dev. 37, 701–708 (2000)

    Google Scholar 

  82. G. Colombo, M. Joerg, R. Schreier, V. Dietz: Treadmill training of paraplegic patients with a robotic orthosis, J. Rehab. Res. Dev. 37, 693–700 (2000)

    Google Scholar 

  83. HealthSouth: http://www.autoambulator.com (2007)

    Google Scholar 

  84. C. Werner, S. Von Frankenberg, T. Treig, M. Konrad, S. Hesse: Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study, Stroke 33, 2895–2901 (2002)

    Google Scholar 

  85. M. Pohl, C. Werner, M. Holzgraefe, G. Kroczek, J. Mehrholz, I. Wingendorf, G. Hoolig, R. Koch, S. Hesse: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS), Clin. Rehabil. 21, 17–27 (2007)

    Google Scholar 

  86. M. Wirz, D.H. Zemon, R. Rupp, A. Scheel, G. Colombo, V. Dietz, T.G. Hornby: Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial, Arch. Phys. Med. Rehab. 86, 672–680 (2005)

    Google Scholar 

  87. H. Schmidt, S. Hesse, R. Bernhardt, J. Krüger: HapticWalker – a novel haptic foot device, ACM Trans. Appl. Percept. (TAP) 2, 166–180 (2005)

    Google Scholar 

  88. S. Jezernik, G. Colombo, M. Morari: Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Trans. Robot. Automat. 20, 574–582 (2004)

    Google Scholar 

  89. D. Reinkensmeyer, D. Aoyagi, J. Emken, J. Galvez, W. Ichinose, G. Kerdanyan, S. Maneekobkunwong, K. Minakata, J. Nessler, W. Timoszyk, K. Vallance, R. Weber, J. Wynne, R. Roy, R. d. Leon, J. Bobrow, S. Harkema, V. Edgerton: Tools for understanding and optimizing robotic gait training, J. Rehab. Res. Dev. 43, 657–670 (2006)

    Google Scholar 

  90. D. Surdilovic, R. Bernhardt: STRING-MAN: A new wire robot for gait rehabilitation, presented at ICRA ʼ04. 2004 IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  91. J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, H. van der Kooij: A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots, Int. J. Robot. Res. 25, 261–282 (2006)

    Google Scholar 

  92. J.A. Galvez, D.J. Reinkensmeyer: Robotics for gait training after spinal cord injury, Topics Spinal Cord Injury Rehab. 11, 18–33 (2005)

    Google Scholar 

  93. D. Aoyagi, W.E. Ichinose, S.J. Harkema, D.J. Reinkensmeyer, J.E. Bobrow: An assistive robotic device that can synchronize to the pelvic motion during human gait training, Proc. 2005 IEEE International Conference on Rehabilitation Robotics, Chicago, Illinois (2005) pp. 565–568

    Google Scholar 

  94. S. Jezernik, R. Scharer, G. Colombo, M. Morari: Adaptive robotic rehabilitation of locomotion: A clinical study in spinally injured individuals, Spinal Cord 41, 657–666 (2003)

    Google Scholar 

  95. D. Aoyagi, Doctoral Dissertation, Department of Mechanical and Aerospace Engineering, University of California at Irvine (2006)

    Google Scholar 

  96. G. Pratt, M. Williamson, P. Dillworth, J. Pratt, K. Ulland, A. Wright: Stiffness isnʼt everything, Fourth International Symposium on Experimental Robotics (1995)

    Google Scholar 

  97. D. Robinson: Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control (Massachusetts Institute of Technology 2000)

    Google Scholar 

  98. D.W. Robinson, J.E. Pratt, D.J. Paluska, G.A. Pratt: Series elastic actuator development for a biomimetic walking robot, 1999 IEEE/ASME Int. Conf. Adv. Intell. Mechatron. (1999) pp. 561–568

    Google Scholar 

  99. M. Peshkin, D.A. Brown, J.J. Santos-Munne, A. Makhlin, E. Lewis, J.E. Colgate, J. Patton, D. Schwandt: KineAssist: A robotic overground gait and balance training device, ICORR: 9th International Conference on Rehabilitation Robotics (2005) pp. 241–246

    Google Scholar 

  100. D. Ferris: Powered lower limb orthoses for gait rehabilitation, Topics Spinal Cord Injury Rehab. 11, 34–49 (2005)

    Google Scholar 

  101. J. Deutsch, J. Latonio, G. Burdea, R. Boian: Post-stroke rehabilitation with the Rutgers Ankle system – a case study, Presence 10, 416–430 (2001)

    Google Scholar 

  102. S. Agrawal, A. Fattah: Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion, IEEE Trans. Neural Syst. Rehab. Eng. 12, 157–165 (2004)

    Google Scholar 

  103. S.K. Banala, S.K. Agrawal: Gait rehabilitation with an active leg orthosis, Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA (2005)

    Google Scholar 

  104. J. Kawamura, T. Ide, S. Hayashi, H. Ono, T. Honda: Automatic suspension device for gait training, Prosthet. Orthot. Int. 17, 120–125 (1993)

    Google Scholar 

  105. R.F. Erlandson, P. deBear, K. Kristy, M. Dijkers, S. Wu: A robotic system to provide movement therapy, Proc. 5th Int. Service Robot Conf., Detroit, MI (1990) pp. 7–15

    Google Scholar 

  106. M.J. Rosen: Telerehabilitation, NeuroRehabilitation 12, 11–26 (1999)

    Google Scholar 

  107. C. Carignan, H. Krebs: Telerehabilitation robotics: Bright lights, big future?, J. Rehabil. Res. Dev. 43, 695–710 (2006)

    Google Scholar 

  108. C. Stanger, M. Cawley: Demographics of rehabilitation robotics users, Technol. Disability 5, 125–138 (1996)

    Google Scholar 

  109. J. Hammel: The role of assessment and evaluation in rehabilitation robotics research and development: Moving from concept to clinic to context, IEEE Trans. Rehab. Eng. 3, 56–61 (1995)

    Google Scholar 

  110. J.J. Wagner, H.F.M. Van der Loos, L.J. Leifer: Dual-character based user interface design for an assistive robot, ROMAN-98 Conference (1998) pp. 101–106

    Google Scholar 

  111. H.F.M. Van der Loos, J. Hammel, D.S. Lees, D. Chang, I. Perkash: Field evaluation of a robot workstation for quadriplegic office workers, Eur. Rev. Biomed. Tech. 5, 317–319 (1990)

    Google Scholar 

  112. J.J. Wagner, H.F.M. Van der Loos, L.J. Leifer: Construction of social relationships between user and robot, Robot. Autonom. Syst. 31, 185–191 (2000)

    Google Scholar 

  113. M.J. Johnson, E. Guglielmelli, G.A. Di Lauro, C. Laschi, M.C. Carrozza, P. Dario: GIVING-A-HAND System: The development of a task-specific robot appliance. In: Advances in Rehabilitation Robotics, Vol. 306, ed. by Z.Z. Bien, D. Stefanov (Springer, Berlin 2004) pp. 127–141

    Google Scholar 

  114. H.F.M. Van der Loos, N. Ullrich, H. Kobayashi: Development of Sensate and Robotic Bed Technologies for Vital Signs Monitoring and Sleep Quality Improvement, Auton. Robot. 15, 67–79 (2003)

    Google Scholar 

  115. T. Sato, T. Harada, T. Mori: Environment-type robot system Robotic Room featured by behavior media, behavior contents, and behavior adaptation, IEEE/ASME Trans. Mechatron. 9, 529–534 (2004)

    Google Scholar 

  116. G. Romer, H.J.A. Stuyt, A. Peters: Cost-savings and economic benefits due to the Assistive Robotic Manipulator (ARM), 9th International Conference on Rehabilitation Robotics: ICORR (2005) pp. 201–204

    Google Scholar 

  117. J.F. Engelberger: Health-care robotics goes commercial: The HelpMate experience, Robotica 11, 517–524 (1993)

    Google Scholar 

  118. P. Dario, C. Laschi, E. Guglielmelli: Design and experiments on a personal robotic assistant, Adv. Robot. 13, 153–169 (1999)

    Google Scholar 

  119. B. Graf, M. Hans, R.D. Schraft: Care-O-bot II – Development of a next generation robotic home assistant, Auton. Robot. 16, 193–205 (2004)

    Google Scholar 

  120. S.P. Levine, D.A. Bell, L.A. Jaros, R.C. Simpson, Y. Koren, J. Borenstein: The NavChair assistive wheelchair navigation system, Rehabilitation Engineering, IEEE Trans. 7, 443–451 (1999), [see also IEEE Trans. on Neural Systems and Rehabilitation]

    Google Scholar 

  121. H. Yanco: Wheelesley: A robotic wheelchair system: Indoor navigation and user interface, Assist. Technol. Artific. Intell. (1998) pp. 256–268

    Google Scholar 

  122. G. Lacey, S. MacNamara: User involvement in the design and evaluation of a smart mobility aid, J. Rehab. Res. Dev. 37, 6 (2000)

    Google Scholar 

  123. K. Wada, T. Shibata, T. Saito, K. Tanie: Effects of three months robot assisted activity to depresssion of elderly people who stay at a health service facility for the aged., SICE Annual Conference, Sappario, Japan (2004) pp. 2004–2714

    Google Scholar 

  124. A.J. Brisben, A.D. Lockerd, C. Lathan: Design evolution of an interactive robot for therapy, Telemed. J. E-Health 10, 252–259 (2004)

    Google Scholar 

  125. Y. Kusuda: How Japan sees the robotics for the future: observation at the World Expo 2005, Ind. Robot. 33, 11–18 (2006)

    Google Scholar 

  126. J. Eriksson, M. Mataric, C. Winstein: Hands-off assistive robotics for post-stroke arm rehabilitation, Proceedings of the 2005 IEEE International Conference on Rehabilitation Robotics, June 28-July 1, Chicago, Illinois (2005) pp. 21–24

    Google Scholar 

  127. M.K. Holden: Virtual environments for motor rehabilitation: review, Cyberpsychol. Behav. 8, 187–211 (2005), discussion 212–219

    Google Scholar 

  128. B. Robins, K. Dautenhahn, R. Te Boekhorst, A. Billard: Robotic assistants in therapy and education of children with autism: can a small humanoid robt help encourage social interaction skills, Univ. Access Inf. Soc. 4, 105–120 (2005)

    Google Scholar 

  129. G. Engelberger: HelpMate, a service robot with experience, Ind. Robot. 25, 101–104 (1998)

    Google Scholar 

  130. M.H. Industries: Life with a Robot: Wakamaru (2003)

    Google Scholar 

  131. R.F. f. Weir: Design of artificial arms and hands for prosthetic applications. In: Standard handbook of biomedical engineering and design, ed. by M. Kutz (McGraw-Hill, New York 2003) pp. 32.1–32.61

    Google Scholar 

  132. T.A. Kuiken, G.A. Dumanian, R.D. Lipschutz, L.A. Miller, K.A. Stubblefield: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee, Prosthet. Orthotics Int. 28(3), 245–253 (2004)

    Google Scholar 

  133. T.A. Kuiken, L.A. Miller, R.D. Lipschutz, B.A. Lock, K. Stubblefield, P.D. Marasco, P. Zhou, G.A. Dumanian: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study, Lancet 369, 371–380 (2007)

    Google Scholar 

  134. G.S. Dhillon, K.W. Horch: Direct neural sensory feedback and control of a prosthetic arm, IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005)

    Google Scholar 

  135. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue: Neuronal ensemble control of prosthetic devices by a human with tetraplegia, Nature 442, 164–171 (2006)

    Google Scholar 

  136. J.R. Wolpaw, G.M. Friehs, V.A. Zerris, C.L. Ojakangas, M.R. Fellows, J.P. Donoghue: Brain-computer interfaces (BCIs) for communication and control: A mini-review, Suppl. Clin. Neurophysiol. 57, 607–613 (2004)

    Google Scholar 

  137. P.R. Kennedy, R.A. Bakay: Restoration of neural output from a paralyzed patient by a direct brain connection, Neuroreport 9, 1707–1711 (1998)

    Google Scholar 

  138. A.B. Schwartz: Cortical neural prosthetics, Annu. Rev. Neurosci. 27, 487–507 (2004)

    Google Scholar 

  139. B. Pesaran, S. Musallam, R.A. Andersen: Cognitive neural prosthetics, Curr. Biol. 16, R77–R80 (2006)

    Google Scholar 

  140. G.E. Loeb, F.J. Richmond, L.L. Baker: The BION devices: injectable interfaces with peripheral nerves and muscles, Neurosurg. Focus 20, E2 (2006)

    Google Scholar 

  141. R.B. Stein, V. Mushahwar: Reanimating limbs after injury or disease, Trends Neurosci. 28, 518–524 (2005)

    Google Scholar 

  142. P.F. Pasquina, P.R. Bryant, M.E. Huang, T.L. Roberts, V.S. Nelson, K.M. Flood: Advances in amputee care, Arch. Phys. Med. Rehabil. 87, S34–S43 (2006), quiz S44-S45

    Google Scholar 

  143. I. Austen: Computerized control is next for artificial limbs (New York Times, January 3, 2002)

    Google Scholar 

  144. A. Basmajian, E.E. Blanco, H.H. Asada: The marionette bed: Automated rolling and repositioning of bedridden patients, presented at IEEE International Conference on Robotics and Automation: ICRAʼ02 (2002)

    Google Scholar 

  145. F. Kasagami, H. Wang, I. Sakuma, M. Araya, T. Dohi: Development of a robot to assist patient transfer, IEEE Int. Conf. Syst. Man Cybernet. 5, 4383–4388 (2004)

    Google Scholar 

  146. G.D. Abowd, M. Ebling, G. Hung, L. Hui, H.W. Gellersen: Context-aware computing, Pervasive Comput. IEEE 1, 22 (2002)

    Google Scholar 

  147. M.J. Covington, W. Long, S. Srinivasan, A.K. Dev, M. Ahamad, G.D. Abowd: Securing context-aware applications using environment roles (ACM, New York 2001)

    Google Scholar 

  148. F.H. Wilhelm, W.T. Roth: Ambulatory assessment of clinical anxiety. In: Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies, (Hogrefe & Huber, Göttingen 1996) pp. 317–345

    Google Scholar 

  149. E. Dishman: Inventing wellness systems for aging in place, Computer 37, 34 (2004)

    Google Scholar 

  150. M. Zinn, B. Roth, O. Khatib, J. Salisbury: A new actuation approach for human friendly robot design, Int. J. Robot. Res. 23, 379–398 (2004)

    Google Scholar 

  151. M. Nokata, K. Ikuta, H. Ishii: Safety evaluation method for rehabilitation robotics. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer-Verlag, Berlin 2004) pp. 187–198

    Google Scholar 

  152. N. Tejima: Risk reduction mechanisms for safe rehabilitation robots. In: Advances in Rehabilitation Robotics, ed. by Z. Bien, D. Stefanov (Springer-Verlag, Berlin 2004) pp. 199–207

    Google Scholar 

  153. H.F.M. Van der Loos: Design and engineering ethics considerations for neurotechnologies, Cambridge Quart. Healthc. Eth. 16, 305–309 (2007)

    Google Scholar 

  154. G. Veruggio: The Roboethics Roadmap: http://www.roboethics.org/site/modules/mydownloads/visit.php?cid=1&lid=37, (2006)

    Google Scholar 

  155. J.F. Engelberger: Robotics in Service (MIT Press, Cambridge 1989)

    Google Scholar 

  156. Z. Bien, D. Stefanov: Advances in Rehabilitation Robotics (Springer, Berlin 2004)

    MATH  Google Scholar 

  157. E. Prassler, G. Lawitzky, A. Stopp, G. Grunwald: Advances In Human-Robot Interaction (Springer, Berlin 2004)

    Google Scholar 

  158. D. Reinkensmeyer, P. Lum, J. Winters: Emerging technologies for improving access to movement therapy following neurologic injury. In: Emerging and Accessible Telecommunications, Information and Healthcare Technologies: Engineering Challenges in Enabling Universal Access, ed. by J. Winters, C. Robinson, R. Simpson, G. Vanderheiden (RESNA, Arlington 2002) pp. 136–150

    Google Scholar 

  159. P. Dario, M.C. Carozza, E. Guglielmelli: Auton. Robot. 15, 1 (2003)

    Google Scholar 

  160. J.E. Speich, J. Rosen: Medical Robotics http://brl.ee.washington.edu/publications/Rep178.pdf. In: Encyclopedia of Biomaterials and Biomedical Engineering (Marcel Dekker, 2004)

    Google Scholar 

  161. D.J. Reinkensmeyer, J.L. Emken, S.C. Cramer: Robotics, motor learning, and neurologic recovery, Ann. Rev. Biomed. Eng. 6, 497–525 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H.F. Machiel Van der Loos Prof or David J. Reinkensmeyer Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Van der Loos, H.M., Reinkensmeyer, D.J. (2008). Rehabilitation and Health Care Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics