Skip to main content

Robots for Education

  • Reference work entry
Springer Handbook of Robotics

Abstract

This chapter provides an overview of the key ingredients that make successful education robots possible. Two very popular outlets for public interaction with robots are the robot tournament and the informal learning venue (e.g., the science museum). Section 55.2 provides a survey of the very popular world of robot-themed tournaments, which have already impacted tens of thousands of students across diverse geographic and age group boundaries [55.1,2,3,4,5]. Section 55.5 provides an overview of robotic installations in informal learning spaces. Robotic technology has now proven to have sufficient robustness and engagement to be a principal component of interactive exhibitry for a new generation of hands-on, active-learning museums [55.6].

To make interactive, educational robots successful, a new level of technology robustness and standardization is required, and significant progress has been made on this front in the past decade. Educational robot devices consist of both hardware (preassembled or as kits or components) and software (both as source code and programming environments). Section 55.3 discusses physical robot platforms that have achieved notable success, while Sect. 55.4 describes both low-level controllers that interface those platforms to high-level computation, as well as the top-level programming environments themselves.

Finally, an important class of tool in the study and execution of educational robotic systems is the ability to evaluate the efficacy of a robot system formally in an educational context. Numerous tools from human–computer interaction, cognitive psychology, and education have demonstrated their usefulness in this regard. Section 55.6 summarizes the manner in which conventional analytical tools may be used to evaluate unconventional educational programs that tap robotic technologies as learning tools across a variety of ages and in both formal and informal learning venues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAAI:

American Association for Artificial Intelligence

AI:

artificial intelligence

ANSI:

American National Standards Institute

ASD:

autism spectrum disorder

DIO:

digital input-output

EPFL:

Ecole Polytechnique Fédérale de Lausanne

FSM:

finite-state machine

HCI:

human computer interaction

I/O:

input/output

IEEE:

Institute of Electrical and Electronics Engineers

LAAS:

Laboratoire dʼAnalyse et dʼArchitecture des Systèmes

NASA:

National Aeronautics and Space Agency

NCER:

National Conference on Educational Robotics

PC:

Purkinje cells

PC:

principal contact

PIC:

programmable intelligent computer

PIC:

programmable interrupt controller

PID:

proportional–integral–derivative

PPRK:

palm pilot robot kit

RAM:

random-access (volatile) memory

References

  1. KIPR: Botball robotics education. http://www.botball.org (KISS, Norman 2005)

  2. R. Manseur: Hardware competitions in engineering education, Front. Educ. Conf. 2, F3C/5–F3C/8 (2000)

    Google Scholar 

  3. Robo Cup Junior: RoboCupJunior official site. http://www.robocupjunior.org/, (Acroname Robotics, Boulder 2006)

  4. C. Stein: Botball: Autonomous students engineering autonomous robots, Comput. Educ. J. 13(2), 72–80 (2003)

    Google Scholar 

  5. FIRST: http://www.usfirst.org/ (FIRST, Manchester 2006)

  6. A. Druin, J. Hendler (Eds.): Robots for Kids: Exploring New Technologies for Learning (Morgan Kaufmann, San Francisco 2000)

    Google Scholar 

  7. R. Siegwart: Grasping the interdisciplinarity of mechatronics, IEEE Robot. Autom. Mag. 8(2), 27–34 (2001)

    Article  Google Scholar 

  8. R.D. Beer, H.J. Chiel, R.F. Drushel: Using Autonomous Robotics to teach science and engineering, Commun. ACM 42(6), 85–92 (1999)

    Article  Google Scholar 

  9. A. Billard: Robota, clever toy and educational tool, Robot. Autonom. Syst. 42, 259–269 (2003)

    Article  MATH  Google Scholar 

  10. P. Coppin: Eventscope: a telescience interface for internet-based education, IEEE Proc. Robot. Autonom. (2002)

    Google Scholar 

  11. B. Fagin: Ada/mindstorms 3.0: A computational environment for introductory robotics and programming, IEEE Robot. Autom. Mag. 10(2), 19–24 (2003)

    Article  Google Scholar 

  12. R.S. Hobson: The changing face of classroom instructional methods: service learning and design in a robotics course, Frontiers in Education Conference, Vol. 2 (Kansas City 2000) pp. F3C/20–F3C/25

    Google Scholar 

  13. D. Kumar, L. Meeden: A robot laboratory for teaching artificial intelligence, SIGCSE ʼ98: Proc. 29th SIGCSE Tech. Symp. Comp. Sci. Edu. (ACM, New York 1998) pp. 341–344

    Google Scholar 

  14. J. Schumacher, D. Welch, D. Raymod: Teaching introductory programming, problem solving and information technology with robots at west point, Proc. 31st Frontiers in Education Conference, Vol. 2 (Reno 2001)

    Google Scholar 

  15. E. Wang: Teaching freshmen design, creativity and programming with legos and labview, Front. Educ. Conf., F3G–11–15 (2001)

    Google Scholar 

  16. U. Wolz: Teaching design and project management with lego rcx robots, SIGCSE ʼ01: Proc. 32nd SIGCSE Tech. Symp. Comp. Sci. Edu. (ACM, New York 2001) pp. 95–99

    Google Scholar 

  17. J.K. Archibald, R.W. Beard: Goal! robot soccer for undergraduate students, IEEE Robot. Autom. Mag. 11(1), 70–75 (2004)

    Article  Google Scholar 

  18. A. Gage, R.R. Murphy: Principles and experiences in using legos to teach behavioural robotics, Proc. 33rd Frontiers in Education Conference, Vol. 2 (Sarasota 2003)

    Google Scholar 

  19. E. Kolberg, N. Orlev: Robotics learning as a tool for integrating science technology curriculum in k-12 schools, Front. Educ. Conf. 1, T2E–12–13 (2001)

    Google Scholar 

  20. B.A. Maxwell, L. Meeden: Integrating robotics research with undergraduate education, IEEE Intell. Syst. 15(6), 22–27 (2000)

    Article  Google Scholar 

  21. A. Nagchaudhuri, G. Singh, M. Kaur, S. George: Lego robotics products boost student creativity in precollege programs at umes, Front. Educ. Conf. 3, S4D–1–S4D–6 (2002)

    Google Scholar 

  22. C. Stein, K. Nickerson: Botball robotics and gender differences in middle school teams, Proc. ASEE Annual Conference (Salt Lake City 2004)

    Google Scholar 

  23. J.B. Weinberg, J.C. Pettibone, S.L. Thomas, M.L. Stephen, C. Stein: The impact of robot projects on girlsʼ attitudes toward science and engineering, Proc. RSS Robotics in Education Workshop (Atlanta 2007)

    Google Scholar 

  24. T. Fong, I. Nourbakhsh, K. Dautenhahn: A survey of socially interactive robots (2002)

    Google Scholar 

  25. F. Martin, B. Mikhak, M. Resnick, B. Silverman, R. Berg: To Mindstorms and Beyond: Evolution of a Construction Kit for Magical Machines (Morgan Kaufmann, San Francisco 2000) pp. 10–32

    Google Scholar 

  26. M. Cooper, D. Keating, W. Harwin, K. Dautenhahn: Robots in the Classroom - Tools for Accessible Education (IOS, Amsterdam 1999)

    Google Scholar 

  27. 6.270 Organizers: The history of 6.270 - MITʼs autonomous robot design competition. http://web.mit.edu/6.270/www/about/history.html (MIT, Cambridge 2005)

  28. BEST Robotics: Middle and high school robotics competition. http://www.bestinc.org/MVC/ (BEST Robotics Inc., Auburn 2006)

  29. D. Ahlgren: Trinity college fire fighting home robot contest. http://www.trincoll.edu/events/robot/ (Trinity College, Hartford 2006)

  30. Fuji Soft ABC: FSI-all japan robot-sumo tournament, http://www.fsi.co.jp/sumo-e/ (Fuji Soft Inc., Tokyo 2006)

  31. IMRMC Organizers: International micro robot maze contest. http://imd.eng.kagawa-u.ac.jp/maze/ (Nagoya Univ., Nagoya 2006)

  32. Robocup official site: http://www.robocup.org/ (The RoboCup Federation, Osaka 2007)

  33. D. Nardi, M. Riedmiller, C. Sammut, J. Santos-Victor (Eds.): RoboCup 2004: Robot Soccer World Cup VIII. In: Lecture Notes in Computer Science, Vol. 3276 (Springer, Berlin/Heidelberg 2005)

    Google Scholar 

  34. T.R. Balch, H.A. Yanco: Ten years of the aaai mobile robot competition and exhibition, Artif. Intell. Mag. 23(1), 13–22 (2002)

    Google Scholar 

  35. C. Pomalaza-Raez, B.H. Groff: Retention 101: Where robots go...students follow, J. Eng. Educ. 92(1) (2003)

    Google Scholar 

  36. D.P. Miller, C. Winton, J.B. Weinberg: Beyond Botball: A Software Oriented Robotics Challenge for Undergraduate Education. Techn. Rep. SS-07–09 (AAAI, Menlo Park 2007)

    Google Scholar 

  37. R.R. Murphy: Using robot competitions to promote intellectual development, Artif. Intell. Mag. 21(1), 77–90 (2000)

    Google Scholar 

  38. D.P. Miller, C. Stein: So thatʼs what Pi is for! And other Educational Epiphanies from Hands-on Robotics (Morgan Kaufmann, San Francisco 2000) pp. 219–243

    Google Scholar 

  39. I. Vernor, D. Ahlgren, D.P. Miller: Robotics olympiads: A new means to integrate theory and practice in robotics, Proc. ASEE 2006 (Chicago 2006)

    Google Scholar 

  40. NASA Robotics Alliance Project: Education matrix. http://robotics.nasa.gov/edu/matrix.php (NASA, Washington 2006)

  41. K-Team: http://www.k-team.com K-Team Corp, Yverdon les bains, K-Team Corp Switzerland (2007)

  42. PPRK: Palm Pilot Robot Kit, http://www.cs.cmu.edu/ pprk/ Carnegie Mellon University, Pitsburgh (2007)

  43. E-puck: http://www.e-puck.org (EPFL, Lausanne 2007)

  44. Garcia Robot: http://www.acroname.com (Acroname Robotics, Boulder 2007)

  45. ER1: http://www.evolution.com (Evolution Robotics, Pasadena 2007)

  46. KHR-1: http://www.kondo-robot.com (Kondo Kagaku, 2007)

  47. Robsapien: http://www.robosapien.com (WowWee, Quebec 2007)

  48. Roomba: http://www.irobot.com (iRobot Corp., Burlington 2007)

  49. iRobot Corp: iRobot Roomba Serial Command Interface (SCI) Specification (iRobot, Burlington 2005)

    Google Scholar 

  50. T.E. Kurt: Hacking Roomba (Wiley, New York 2006)

    Google Scholar 

  51. D.P. Miller: Quick and easy way to add vision to your irobot create or roomba. http://i-borg.engr.ou.edu/ dmiller/create/ , Oklahoma University (2007)

  52. Gumstix: http://www.gumstix.com (Gumstix Inc., Portola Valley 2007)

  53. M.J. Matarić, N. Koenig, D. Feil-Seifer: Materials for Enabling Hands-on Robotics and STEM Education, Tech. Rep. SS-07–09 (AAAI, Menlo Park 2007)

    Google Scholar 

  54. J.L. Jones, A.M. Flynn: Mobile Robots: Inspiration to Implementation (Peters, Wellesley 1993)

    MATH  Google Scholar 

  55. BASIC stamps: http://www.parallax.com/htmlpages=products=basicstamps=basicstamps.asp (Parallax Inc., Rooklin 2007)

  56. Savage Innovations: OOPic home page. http://www.oopic.com/ (Savage Innovations, Huntsville 2007)

  57. S. Richards: Brain stem gp 1.0 module. http://www.acroname.com/robotics/parts/S1-GP-BRD.html

  58. R. LeGrand, K. Machulis, D.P. Miller, R. Sargent, A. Wright: The XBC: A modern low-cost mobile robot controller, IEEE Proc. IROS 2005 (Edmonton 2005)

    Google Scholar 

  59. F. Martin: The black fin handyboard. http://www.cs.uml.edu/blackfin/ (Analog Devices, Norwood 2007)

  60. C. Rogers, M. Portsmore: Bringing engineering to elementary school, J. STEM Educ. 5(3, 4), 17–28 (2004)

    Google Scholar 

  61. Interactive C: http://www.kipr.org/ic (KISS Inst. for Practical Robots, Norman 2007)

  62. C.E. van Lent: Using robot platforms to enhance concept learning in introductory cs courses, AAAI Spring Symp. Robotics in Education (Stanford 2004)

    Google Scholar 

  63. D.P. Miller, C. Winton: Botball kit for teaching engineering computing, Proc. ASEE National Conference (ASEE, Salt Lake City 2004)

    Google Scholar 

  64. S.P. Imberman: Teaching neural networks using lego handy board robots in an artificial intelligence course, SIGCSE ʼ03: Proc. 34th SIGCSE Tech. Symp. Comp. Sci. Edu. (ACM, New York 2003) pp. 312–316

    Chapter  Google Scholar 

  65. N. Nilson: Shakey the Robot, Techn. Rep. 232 (SRI Int., Menlo Park 1984)

    Google Scholar 

  66. I. Horswill: Visual support for navigation in the polly system, Proc. AAAI Fall Symposium on Applications of Artificial Intelligence to Real-World Autonomous Mobile Robots (Cambridge 1992) pp. 62–67

    Google Scholar 

  67. T. Matsui, H. Asoh, J. Fry, Y. Motomura, F. Asano, T. Kurita, I. Hara, N. Otsu: Integrated natural spoken dialogue system for jijo-2 mobile robot for office services, AAAI/IAAI (1999) pp. 621–627

    Google Scholar 

  68. W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, S. Thrun: Experiences with an interactive museum tour-guide robot, Artif. Intell. 114(1–2), 3–55 (1999)

    Article  MATH  Google Scholar 

  69. S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, D. Schulz: Minerva: a second-generation museum tour-guide robot, Proc. Int. Conf. Robot. Autom. (ICRA) 3, 1999–2005 (1999)

    Google Scholar 

  70. W. Burgard, P. Thrahanis, D. Hahnel, M. Moors, D. Schulz, H. Baltzakis, A.A. Tourbot: webfair: Web-operated mobile robots for tele-presence in populated exhibitions, Workshop: Robotic in Exhibition, IROS 2002 (Lausanne 2002)

    Google Scholar 

  71. R. Bischoff: Natural communication and interaction with humanoid robots, Proc. the 2nd Int. Symposium on Humanoid Robots (Tokyo 1999) pp. 121–128

    Google Scholar 

  72. I.R. Nourbakhsh: Nourbakhsh: The mobot mueseum robot installations: A five year experiment, Workshop: Robotic in Exhibition IROS 2002 (Lausanne 2002)

    Google Scholar 

  73. T. Willeke, C. Kunz, I. Nourbakhsh: The history of the Mobot museum robot series: An evolutionary study, Proc. of the Florida Artificial Intelligence Research Society (FLAIRS) (Key West 2001) pp. 514–518

    Google Scholar 

  74. B. Graf, O. Barth: Entertainment robotics: Examples, key technologies and perspectives, Workshop: Robotic in Exhibition, IROS 2002 (Lausanne 2002)

    Google Scholar 

  75. R. Siegwart, K. Arras, S. Bouabdallah, D. Burnier, G. Froidevaux, X. Greppin, B. Jensen, A. Lorotte, L. Mayor, M. Meisser, R. Piguet, G. Ramel, G. Térrien, N. Tomatis: Robox at expo.02: A large scale installation of personal robots, Robot. Auton. Syst. 42(3–4), 203–222 (2003)

    Article  MATH  Google Scholar 

  76. B. Jensen, N. Tomatis, L. Mayor, A. Drygajlo, R. Siegwart: Robots meet humans - interaction in public spaces, IEEE Trans. Ind. Electron. 52(6), 1530–1546 (2006)

    Article  Google Scholar 

  77. A. Drygajlo, P. Prodanov, G. Ramel, M. Meisser, R. Siegwart: On developing voice enabled interface for interactive tour-guide robots, Adv. Robot. 17(7), 599–616 (2003)

    Article  Google Scholar 

  78. R. Alami: Towards a personal robot. In Workshop: Robotic in Exhibition, IROS 2002, Lausanne (2002)

    Google Scholar 

  79. A. Clodic, S. Fleury, R. Alami, M. Herrb, R. Chatila: Supervision and interaction: Analysis for an autonomous tour-guide robot deployment, Proc. of IEEE International Conference on Advanced Robotics, ICAR (Seatle 2004)

    Google Scholar 

  80. A. Haasch, A. Hohenner, S. Huwel, M. Kleinehagenbrock, S. Lange, I. Toptsis, G. Fink, J. Fritsch, B. Wrede, G. Sagerer: Biron - the bielefeld robot companion, Proc. of International Workshop on Advances in Service Robotics (Stuttgart 2004) pp. 27–32

    Google Scholar 

  81. S. All, I. Nourbakhsh: Insect telepresence: Using robotic tele-embodiment to bring insects face-to-face with humans, Auton. Robot. 10, 149–161 (2001)

    Article  MATH  Google Scholar 

  82. B. Laurel (Ed.): The Art of Human Computer Interface Design (Addison-Wesley, Reading 1994)

    MATH  Google Scholar 

  83. S. Allen: Looking for learning in visitor talk: A methodological exploration. In: Learning Conversations in Museums, ed. by G. Leinhardt, K. Crowley, K. Knutson (Lawrence Erlbaum, Mahwah 2002) pp. 259–303

    Google Scholar 

  84. K. Crowley, M. Callanan: Describing and supporting collaborative scientific thinking in parent-child interactions, J. Museum Educ. 23(1), 12–17 (1998)

    Google Scholar 

  85. K. Crowley, M.A. Callanan, J.L. Jipson, J. Galco, K. Topping, J. Shrager: Shared scientific thinking in everyday parent-child activity, Sci. Educ. 85(6), 712–732 (2001)

    Article  Google Scholar 

  86. G. Leinhardt, K. Crowley: Objects of learning, objects of talk: Changing minds in museums. In: Perspectives on Object-Centered Learning in Museums, ed. by S.G. Paris (Lawrence Erlbaum, Mahwah 2002)

    Google Scholar 

  87. G. Leinhardt, K. Crowley, K. Knutson (Eds.): Learning Conversations in Museums (Lawrence Erlbaum, Mahwah 2002)

    Google Scholar 

  88. I. Nourbakhsh, E. Hamner, D. Bernstein, K. Crowley, E. Ayoob, M. Lotter, S. Shelly, T. Hsiu, E. Porter, B. Dunlavey, D. Clancy: The personal exploration rover: Educational assessment of a robotic exhibit for informal learning venues, Int. J. Eng. Educ. (2006) Special Issue on Robotics Education

    Google Scholar 

  89. K. Crowley, M.A. Callanan, H.R. Tenenbaum, E. Allen: Parents explain more often to boys than to girls during shared scientific thinking, Psychol. Sci. 12(3), 258–261 (2001)

    Article  Google Scholar 

  90. H.H. Lund, P. Marti: Physical and conceptual constructions in advanced learning environments, Interact. Stud. 5(2), 271–301 (2004)

    Article  Google Scholar 

  91. I.R. Nourbakhsh, K. Crowley, A. Bhave, E. Hamner, T. Hsiu, A. Perez-Bergquist, S. Richards, K. Wilkinson: The robotic autonomy mobile robotics course: iRobot design, curriculum design and educational assessment, Auton. Rob. 18(1), 103–127 (2005)

    Article  Google Scholar 

  92. F.G. Martin: Robotic explorations: A hands-on introduction to engineering (Prentice Hall, Upper Saddle River 2001)

    Google Scholar 

  93. B.J. Wadsworth: Piagetʼs theory of cognitive development: An introduction for students of psychology and education (McKay, New York 1971)

    Google Scholar 

  94. B. Laurel: Computers as theatre (Addison-Wesley, Reading 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David P. Miller Prof , Illah R. Nourbakhsh Prof or Roland Siegwart Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Miller, D.P., Nourbakhsh, I.R., Siegwart, R. (2008). Robots for Education. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics