Skip to main content

Perceptual Robotics

  • Reference work entry
Springer Handbook of Robotics

Abstract

Perceptual functions are central to many applications in robotics and for the construction of efficient human–robot interfaces. The study of perception in biological systems has revealed important information-processing principles that have been converted to powerful applications in robotics and computer vision. The chapter first discusses two central theories of object recognition: model- and exemplar-based theories. A review of experimental results from the study of object recognition in biological systems suggests that exemplar-based approaches capture important properties of object recognition in the brain. We then discuss how very similar principles have been realized in highly efficient technical systems for object recognition and detection, including realizations that are based on biologically inspired neural architectures. Principles for the efficient processing of complex shapes can be extended to the representation of complex movements and actions. We illustrate this by first reviewing some properties of the cortical mechanisms of the recognition of complex movements and actions, focusing on principles that are useful for robotics applications. Again, exemplar-based approaches seem to capture important properties of motion recognition in the brain, and at the same time provide a powerful approach for building technical movement recognition systems. Finally, it is shown that the example-based framework is not only useful for recognition, but also provides the basis for powerful synthesis methods. As one example we discuss the synthesis of photorealistic three-dimensional (3-D) models of faces, exploiting correspondencebetween training examples. Related approaches have been developed for spatiotemporal patterns. We review a class of algorithms that permit the accurate modeling of movements and movement styles by interpolation between example trajectories with high relevance for the synthesis of movements, e.g., in humanoid robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIP:

anterior interparietal area

AIT:

anterior inferotemporal cortex

EBA:

extrastriate body part area

GSD:

geon structural description

HMM:

hidden Markov model

IT:

inferotemporal

IT:

intrinsic tactile

LGN:

lateral geniculate nucleus

MT:

medial temporal

MT:

multitask

NAP:

nonaccidental properties

PCA:

principle components analysis

PFC:

prefrontal cortex

PIT:

posterior inferotemporal cortex

RBC:

recognition-by-components

RBF:

radial basis function

RT:

reaction time

RT:

room-temperature

STS:

superior temporal sulcus

ZMP:

zero-moment point

fMRI:

functional magnetic resonance imaging

References

  1. D. Marr: Vision (Freeman, San Francisco 1982)

    Google Scholar 

  2. R.A. Brooks: A robust layered control system for a mobile robot, IEEE J. Robot. Automat. 2(1), 14–23 (1986)

    Google Scholar 

  3. J.A.S. Kelso: Dynamic Patterns: The Self-Organization of Brain and Behaviour (MIT Press, Cambridge 1995)

    Google Scholar 

  4. G. Schöner, M. Dose, C. Engels: Dynamics of behavior: theory and applications for autonomous robot architectures, Robot. Auton. Syst. 16, 213–245 (1997)

    Google Scholar 

  5. J. Tani, M. Ito: Self-organization of behavioral primitives as multiple attractor dynamics: A robot experiment, IEEE Trans. Syst. Man Cybernet. Part A: Syst Humans 33(4), 481–488 (2003)

    Google Scholar 

  6. W.H. Warren: The dynamics of perception and action, Psychol. Rev. 113, 358–389 (2006)

    Google Scholar 

  7. D. Marr, H. Nishihara: Representation and recognition of the spatial organization of three-dimensional shapes, Proc. R. Soc. London B 200, 269–294 (1978)

    Google Scholar 

  8. I. Biederman: Recognition-by-components: A theory of human image understanding, Psycholog. Rev. 94, 115–147 (1987)

    Google Scholar 

  9. D. Lowe: Perceptual Organization and Visual Recognition (Kluwer, Boston 1985)

    Google Scholar 

  10. S. Ullman: High-level vision. Object Recognition and Visual Cognition (MIT Press, Cambridge 1996)

    MATH  Google Scholar 

  11. M.A. Kurbat: Structural description theories: is RBC/JIM a general-purpose theory of human entry-level object recognition?, Perception 23, 1339–1368 (1994)

    Google Scholar 

  12. S. Edelman: Representation and Recognition in Vision (MIT Press, Cambridge 1999)

    Google Scholar 

  13. M.J. Tarr, H.H. Bülthoff: Image-based object recognition in man, monkey and machine, Cognition 67(1–2), 1–20 (1998)

    Google Scholar 

  14. M. Graf, W. Schneider: Structural descriptions in HIT - a problematic commitment, Behav. Brain Sci. 24, 483–484 (2001)

    Google Scholar 

  15. H.H. Bülthoff, S. Edelman: Psychophysical support for a two-dimensional view interpolation theory of object recognition, Proc. Nat. Acad. Sci. USA 89, 60–64 (1992)

    Google Scholar 

  16. M.J. Tarr, S. Pinker: Mental orientation and orientation-dependence in shape recognition, Cognit. Psychol. 21, 233–282 (1989)

    Google Scholar 

  17. W.G. Hayward, M.J. Tarr: Testing conditions for viewpoint invariance in object recognition, J. Exp. Psychol. Human Percept. Perform. 23, 1511–1521 (1997)

    Google Scholar 

  18. S.E. Palmer, E. Rosch, P. Chase: Canonical perspective and the perception of objects. In: Attention and Performance IX, ed. by J. Long, A. Baddeley (Erlbaum, Hillsdale 1981) pp. 135–151

    Google Scholar 

  19. H. Hill, P.G. Schyns, S. Akamatsu: Information and viewpoint dependence in face recognition, Cognition 62, 201–222 (1997)

    Google Scholar 

  20. C. Wallraven, A. Schwaninger, S. Schuhmacher, H.H. Bülthoff: View-Based Recognition of Faces in Man and Machine: Re-visiting Inter-Extra-Ortho, Lect. Notes Comput. Sci. 2525, 651–660 (2002)

    Google Scholar 

  21. M.J. Tarr: Rotating objects to recognize them: a case study on the role of viewpoint dependency in the recognition of three-dimensional objects, Psychonom. Bull. Rev. 2, 55–82 (1995)

    Google Scholar 

  22. R. Lawson, G.W. Humphreys: View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects, Percept. Psychophys. 60, 1052–1066 (1998)

    Google Scholar 

  23. E. Ashbridge, D.I. Perrett: Generalizing across object orientation and size. In: Perceptual Constancy. Why Things look as they do, ed. by V. Walsh, J. Kulikowski (Cambridge University Press, Cambridge 1998) pp. 192–209

    Google Scholar 

  24. M. Dill, S. Edelman: Imperfect invariance to object translation in the discrimination of complex shapes, Perception 30, 707–724 (2001)

    Google Scholar 

  25. K.R. Cave, S. Pinker, L. Giorgi, C.E. Thomas, L.M. Heller, J.M. Wolfe, H. Lin: The representation of location in visual images, Cognit. Psychol. 26, 1–32 (1994)

    Google Scholar 

  26. S. Ullman: Aligning pictorial descriptions: an approach to object recognition, Cognition 32, 193–254 (1989)

    Google Scholar 

  27. S. Ullman, R. Basri: Recognition by linear combinations of models, IEEE Trans. Pattern Anal. Mach. Intell. 13, 992–1006 (1991)

    Google Scholar 

  28. T. Poggio, S. Edelman: A network that learns to recognize three-dimensional objects, Nature 343, 263–266 (1990)

    Google Scholar 

  29. D. Perrett, W.M. Oram: Visual recognition based on temporal cortex cells: viewer-centred processing of pattern configurations, Zeitschrift Naturforschung C 53, 518–541 (1998)

    Google Scholar 

  30. M. Riesenhuber, T. Poggio: Hierarchical models of object recognition in cortex, Nature Neurosci. 2, 1019–1025 (1999)

    Google Scholar 

  31. E.T. Rolls, T. Milward: A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures, Neural Comput. 2(11), 2547–2572 (2000)

    Google Scholar 

  32. G. Wallis, H.H. Bülthoff: Learning to recognize objects, Trends Cognit. Sci. 3, 22–31 (1999)

    Google Scholar 

  33. D. Perrett, W.M. Oram, E. Ashbridge: Evidence accumulation in cell populations responsive to faces: an account of generalization of recognition without mental transformations, Cognition 67, 111–145 (1998)

    Google Scholar 

  34. H. Sakata: The role of the parietal cortex in grasping, Adv. Neurol. 93, 121–139 (2003)

    Google Scholar 

  35. D.H. Hubel, T.N. Wiesel: Receptive fields, binocular interaction and functional architecture in the catʼs visual cortex, J. Physiol. (London) 160, 106–154 (1962)

    Google Scholar 

  36. G. Wang, M. Tanifuji, K. Tanaka: Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging, Neurosci. Res. 32, 33–46 (1998)

    Google Scholar 

  37. K. Tanaka: Representation of visual feature objects in the inferotemporal cortex, Neural Netw. 9(8), 1459–1475 (1996)

    MATH  Google Scholar 

  38. K. Grill-Spector, R. Malach: The human visual cortex, Annu. Rev. Neurosci. 27, 649–677 (2004)

    Google Scholar 

  39. N.K. Logothetis, J. Pauls, H.H. Bülthoff, T. Poggio: View-dependent object recognition by monkeys, Curr. Biol. 4, 401–414 (1994)

    Google Scholar 

  40. L. Roberts: Machine perception of three-dimensional solids. In: Optical and Electro-optical Information Processing, ed. by J.T. Tippet (MIT Press, Cambridge 1965) pp. 159–197

    Google Scholar 

  41. M. Swain, D. Ballard: Color indexing, Int. J. Comput. Vis. 7, 11–32 (1991)

    Google Scholar 

  42. C. Schmid, R. Mohr: Local greyvalue invariants for image retrieval, IEEE Trans. Pattern Mach. Intell. 19, 530–535 (1997)

    Google Scholar 

  43. D. Lowe: Distinctive image features from scale invariant keypoints, Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Google Scholar 

  44. M. Kirby, L. Sirovich: Applications of the Karhunen-Loeve procedure for the characterization of human faces, IEEE Trans. Pattern Mach. Intell. 12, 103–108 (1990)

    Google Scholar 

  45. A. Delorme, S. Thorpe: SpikeNET: An event-driven simulation package for modeling large networks of spiking neurons, Netw. Comput. Neural Syst. 14, 613–627 (2003)

    Google Scholar 

  46. Y. LeCun, F. Huang, L. Bottou: Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting in Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  47. T. Serre, L. Wolf, T. Poggio: Object recognition with features inspired by visual cortex. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  48. S. Thorpe, D. Fize, C. Marlot: Speed of processing in the human visual system, Nature 381(6582), 520–522 (1996)

    Google Scholar 

  49. G. Wallis, H.H. Bülthoff: Effects of temporal association on recognition memory, Proc. Nat. Acad. Sci. USA 98, 4800–4804 (2001)

    Google Scholar 

  50. J.V. Stone: Object recognition using spatio-temporal signatures, Vis. Res. 38, 947–951 (1998)

    Google Scholar 

  51. J.V. Stone: Object recognition: View-specificity and motion-specificity, Vis. Res. 39, 4032–4044 (1999)

    Google Scholar 

  52. Q.C. Voung, M.J. Tarr: Rotation direction affects object recognition, Vis. Res. 44(14), 1717–1730 (2004)

    Google Scholar 

  53. C. Wallraven, H.H. Bülthoff: Automatic acquisition of exemplar-based representations for recognition from image sequences. CVPR 2001 - Workshop on Models versus Exemplars (2001)

    Google Scholar 

  54. C. Wallraven, B. Caputo, A.B.A. Graf: Recognition with local features: The kernel recipe, Proc. Int. Conf. Comput. Vis. 2, 257–264 (2003), IEEE Press

    Google Scholar 

  55. F.N. Newell, M.O. Ernst, B.S. Tjan, H.H. Bülthoff: Viewpoint dependence in visual and haptic object recognition, Psychol. Sci. 12, 37–42 (2001)

    Google Scholar 

  56. M.A. Giese, T. Poggio: Neural mechanisms for the recognition of biological movements, Nat. Rev. Neurosci. 4, 179–192 (2003)

    Google Scholar 

  57. C. Wallraven, H.H. Bülthoff: Object Recognition in Man and Machine. Object Recognition, Attention and Action (Springer, Tokyo) (in press)

    Google Scholar 

  58. J.-P. Ewert: Neural mechanisms of prey-catching and avoidance behavior in the toad (bufo bufo), Brain Behav. Evol. 3, 36–56 (1970)

    Google Scholar 

  59. G. Johansson: Visual perception of biological motion and a model for its analysis, Percept. Psychophys. 14, 201–211 (1973)

    Google Scholar 

  60. K. Verfaillie: Perceiving human locomotion: priming effects in direction discrimination, Brain Cogn. 44, 192–213 (2000)

    Google Scholar 

  61. A.J. OʼToole, D.A. Roark, H. Abdi: Recognizing moving faces: A psychological and neural synthesis, Trends Cognit. Sci. 6, 261–266 (2002)

    Google Scholar 

  62. D. Perrett, A. Puce: Electrophysiology and brain imaging of biological motion, Phil. Trans. R. Soc. Lond. B 358, 435–445 (2003)

    Google Scholar 

  63. D.D. Hoffman, B.E. Flinchbaugh: The interpretation of biological motion, Biol. Cybernet. 42, 195–204 (1982)

    MATH  Google Scholar 

  64. J.A. Webb, J.K. Aggarwal: Structure from motion of rigid and jointed objects, Artif. Intell. 19, 107–130 (1982)

    Google Scholar 

  65. M. Peelen, A. Wiggett, P. Downing: Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion, Neuron 49, 815–822 (2006)

    Google Scholar 

  66. G. Rizzolatti, L. Craighero: The mirror-neuron system, Ann. Rev. Neurosci. 27, 169–192 (2004)

    Google Scholar 

  67. E.D. Grossman, R. Blake, C.Y. Kim: Learning to see biological motion: brain activity parallels behavior, J. Cogn. Neurosci. 16, 1669–1679 (2004)

    Google Scholar 

  68. J. Jastorff, Z. Kourtzi, M.A. Giese: Learning to discriminate complex movements: Biological versus artificial trajectories, J. Vis. 6, 791–804 (2006)

    Google Scholar 

  69. H. Hill, F.E. Pollick: Exaggerating temporal differences enhances recognition of individuals from point light displays, Psychol. Sci. 11, 223–228 (2000)

    Google Scholar 

  70. B. Knappmeyer, I.M. Thornton, H.H. Bülthoff: The use of facial motion and facial form during the processing of identity, Vision Res. 43, 1921–1936 (2003)

    Google Scholar 

  71. J. Lee, W. Wong: A stochastic model of coherent motion detection, Biol. Cybernet. 91, 306–314 (2004)

    MATH  Google Scholar 

  72. P. Kornprobst, T. Vieille, I.K. Dimo: Could early visual processes be sufficient to label motions? Proceedings of the IEEE International Joint Conference of Neural Networks (IJNNʼ05) (2005) pp. 1687–1692

    Google Scholar 

  73. G. Metta, G. Sandini, L. Natale, L. Craighero, L. Fadiga: Understanding mirror neurons: a bio-robotic approach, Interaction Studies 7, in press

    Google Scholar 

  74. D.M. Wolpert, K. Doya, M. Kawato: A unifying computational framework for motor control and social interaction, Philos. Trans. R. Soc. London B Biol. Sci. 358, 593–602 (2003)

    Google Scholar 

  75. A. Bobick: Movement, activity, and action: The role of knowledge in the perception of motion, Philos. Trans. R. Soc. London B 352, 1257–1265 (1997)

    Google Scholar 

  76. I. Essa, A. Pentland: Coding, analysis, interpretation, and recognition of facial expressions, IEEE Trans. Pattern Anal. Mach. Intell. 19, 757–763 (1997)

    Google Scholar 

  77. J.K. Aggarwal, Q. Cai: Human motion analysis: A reviewm, Comput. Vision Image Understand. 73, 428–440 (1999)

    Google Scholar 

  78. D.M. Gavrila: The visual analysis of human movement: A survey, Comp. Vis. Image Underst. 73, 82–98 (1999)

    MATH  Google Scholar 

  79. T.B. Moeslund, G. Granum: A survey of computer vision-based human motion capture, Comp. Vis. Image Underst. 81, 231–268 (2001)

    MATH  Google Scholar 

  80. D. Marr, L.M. Vaina: Representation and recognition of the movements of shapes, Proc. R. Soc. London B 214, 501–524 (1982)

    Google Scholar 

  81. S. Wachter, H.-H. Nagel: Tracking of persons in monocular image sequences, Comput. Vis. Image Underst. 74, 174–192 (1999)

    Google Scholar 

  82. J.J. Wang, S. Singh: Video analysis of human dynamics - a survey, Real-Time Imaging 9, 321–346 (2003)

    Google Scholar 

  83. R. Rosales, S. Sclaroff: Inferring body pose without tracking body parts, Proc. IEEE Conf. Comput. Vis. Pattern Recognition (CVPR) II, 721–727 (2000)

    Google Scholar 

  84. A. Agarwal, B. Triggs: Recovering 3D human pose from monocular images, IEEE Trans. Pattern Anal. Machine Intell. (PAMI) 28, 44–58 (2006)

    Google Scholar 

  85. C. Curio, M.A. Giese: Combining View-Based and Model-Based Tracking of Articulated Human Movements. In: IEEE Workshop on Applications of Computer Vision/IEEE Workshop on Motion and Video Computing (WACV/MOTION 2005) (IEEE Computer Society, Los Alamitos 2005) pp. 261–268

    Google Scholar 

  86. T. Poggio, E. Bizzi: Generalization in vision and motor control, Nature 431, 768–774 (2004)

    Google Scholar 

  87. P. Niyogi, F. Girosi, T. Poggio: Incorporating prior information in machine learnig by creating virtual examples, Proc. IEEE 86, 2196–2209 (1998)

    Google Scholar 

  88. T. Valentine: A unified account of the effects of distinctiveness, inversion, and race in face recognition, Quart. J. Exp. Psychol. A: Human Exp. Psychol. 43, 161–204 (1991)

    Google Scholar 

  89. T. Vetter, T. Poggio: Linear object classes and image synthesis from a single example image, IEEE Trans. Pattern Anal. Mach. Intell. 19, 733–742 (1997)

    Google Scholar 

  90. A. Lanitis, C.J. Taylor, T.F. Cootes: Automatic Interpretation and Coding of Face Images Using Flexible Models, IEEE Trans. Pattern Mach. Intell. 19, 743–756 (1997)

    Google Scholar 

  91. V. Blanz, T. Vetter: A morphable model for the synthesis of 3d faces. In: Proc. ACM SIGGRAPH (1999) pp. 187–194

    Google Scholar 

  92. I. Bülthoff, F.N. Newell: Categorical perception of sex occurs in familiar but not unfamiliar faces, Vis. Cognit. 11, 823–855 (2004)

    Google Scholar 

  93. A.J. OʼToole, T. Vetter, V. Blanz: Three-dimensional shape and two-dimensional surface reflectance contributions to face recognition: An application of three-dimensional morphing, Vis. Res. 39, 3145–3155 (1999)

    Google Scholar 

  94. D.A. Leopold, A.J. OʼToole, T. Vetter, V. Blanz: Prototype-referenced shape encoding revealed by high-level after effects, Nat. Neurosci. 4, 89–94 (2001)

    Google Scholar 

  95. D.A. Leopold, I.V. Bondar, M.A. Giese: Norm-based face encoding by single neurons in the monkey inferotemporal cortex, Nature 442, 572–575 (2006)

    Google Scholar 

  96. M. Breidt, C. Wallraven, D.W. Cunningham, H.H. Bülthoff: Facial Animation Based on 3D Scans and Motion Capture. SIGGRAPH ʼ03 Sketches & Applications (ACM, New York 2003)

    Google Scholar 

  97. C. Wallraven, M. Breidt, D.W. Cunningham, H.H. Bülthoff: Psychophysical evaluation of animated facial expressions, Proc. 2nd Symp. Appl. Percept. Graphics Visual., 17–24 (2005)

    Google Scholar 

  98. M. Unuma, K. Anjyo, R. Takeuchi: Fourier principles for emotion-based human figure animation, ACM Trans. Comput. Graphics 29, 91–99 (1995)

    Google Scholar 

  99. A. Bruderlin, L. Williams: Motion signal processing, ACM Trans. Comput. Graphics 29, 97–104 (1995)

    Google Scholar 

  100. D.J. Wiley, J.K. Hahn: Interpolation synthesis of articulated figure motion, IEEE Comp. Graphics Appl. 17, 39–45 (1997)

    Google Scholar 

  101. Y. Yacoob, M.J. Black: Parameterized modeling and recognition of activities, Comput. Vis. Image Understand. 73, 232–247 (1999)

    Google Scholar 

  102. M.A. Giese, T. Poggio: Morphable models for the analysis and synthesis of complex motion patterns, Int. J. Comput. Vis. 38, 59–73 (2000)

    MATH  Google Scholar 

  103. M. Brand, A. Hertzmann: Style Machines. Proc. ACM SIGGRAPH 2000 (ACM, New York 2000) pp. 183–192

    Google Scholar 

  104. T. Flash, B. Hochner: Motor primitives in vertebrates and invertebrates, Curr. Opin. Neurobiol. 15(6), 660–666 (2005)

    Google Scholar 

  105. O.C. Jenkins, M.J. Mataric: Performance-derived behavior vocabularies: Data-driven acqusition of skills from motion, Int. J. Human Robot. 1, 237–288 (2004)

    Google Scholar 

  106. A. Safonova, J.K. Hodgins, N.S. Pollard: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces, ACM Trans. Comput. Graphics 23, 514–521 (2004)

    Google Scholar 

  107. W. Ilg, G.H. Bakir, J. Mezger, M.A. Giese: On the representation, learning and transfer of spatio-temporal movement characteristics, Int. J. Human Robot. 1, 613–636 (2004)

    Google Scholar 

  108. O. Arikan, D.A. Forsyth, J.F. OʼBrien: Motion synthesis from annotations, ACM Trans. Graphics 22, 402–408 (2003)

    MATH  Google Scholar 

  109. L. Kovar, M. Gleicher, F. Pighin: Motion Graphs. Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (ACM, New York 2002) pp. 473–482

    Google Scholar 

  110. L. Ren, G. Shakhnarovich, J.K. Hodgins, H. Pfister, P. Viola: Learning silhouette features for control of human motion, ACM Trans. Graphics 24, 1303–1331 (2005)

    Google Scholar 

  111. S. Schaal, A. Ijspeert, A. Billard: Computational approaches to motor learning by imitation, Phil. Trans. R. Soc. London B 358, 537–547 (2003)

    Google Scholar 

  112. M. Gleicher, P. Litwinowicz: Constraint-based motion adaptation, J. Vis. Comput. Anim. 9, 65–94 (1998)

    Google Scholar 

  113. S. Tak, H.S. Ko: A physically based motion retargeting filter, ACM Trans. Graphics 24, 98–117 (2005)

    Google Scholar 

  114. C.L. Colby: Action-oriented spatial reference frames in cortex, Neuron 20, 15–24 (1998)

    Google Scholar 

  115. A.R. Kilgour, R. Kitada, P. Servos, T.W. James, S.J. Lederman: Haptic face identification activates ventral occipital and temporal areas: an fMRI study, Brain Cogn. 59, 246–257 (2005)

    Google Scholar 

  116. D.H. Foster, S.J. Gilson: Recognizing novel three-dimensional objects by summing signals from parts and views, Proc. R. Soc. London B 269, 1939–1947 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinrich H. Bülthoff Prof , Christian Wallraven PhD or Martin A. Giese PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Bülthoff, H.H., Wallraven, C., Giese, M.A. (2008). Perceptual Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics