Abstract
Our goal is to model the way people induce knowledge from rare and sparse data. This paper describes a theoretical framework for inducing knowledge from these incomplete data described with conceptual graphs. The induction engine is based on a non-supervised algorithm named default clustering which uses the concept of stereotype and the new notion of default subsumption, the latter being inspired by the default logic theory. A validation using artificial data sets and an application concerning an historic case are given at the end of the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. The Systems Programming Series. Addison-Wesley Publishing Company, Massachusetts (1984)
Reiter, R.: A logic for default reasoning. Artificial Intelligence (13), 81–132 (1980)
Corruble, V., Ganascia, J.-G.: Induction and the discovery of the causes of scurvy: a computational reconstruction. In: Artificial Intelligence Journal, Special issue on scientific discovery. Elsevier Press, 205–223 (1997)
Velcin, J.: Reconstruction rationnelle des mentalités collectives: deux études sur la xénophobie, DEA report, Internal Report University Paris VI, Paris (2002)
McDermott, D., Doyle, J.: Nonmonotonic logic 1. Artificial Intelligence (13), 41–72 (1980)
McCarthy, J.: Circumscription: a form of non-monotonic reasoning. Artificial Intelligence (13), 27–39, 171–172 (1980)
Rosch, E.: Cognitive representations of semantic categories. Journal of Experimental Psychology: General (104), 192–232 (1975)
Lippman, W.: Public Opinion, Ed. Ed. MacMillan, NYC (1922)
Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual Graph Matching for Semantic Search. In: Proceedings of the 10th International Conference on Conceptual Structures: Integration and Interfaces, pp. 92–106. Springer, Heidelberg (2002)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
Corter, J.E., Gluck, M.A.: Information, uncertainty, and the utility of categories. In: Proceedings of the Seventh Annual Conference of the Cognitive Science Society, pp. 283–287. Lawrence Erlbaum Associates, Mahwah (1985)
Fisher, D.H.: Knowledge Acquisition Via Incremental Conceptual Clustering. Machine Learning (2), 139–172 (1987)
Genest, D., Salvat, E.: A platform allowing typed nested graphs: How cogito became cogitant. In: Proceedings of the Sixth International Conference on Conceptual Structures, Springer, Berlin (1998)
Moscovici, S.: La psychanalyse: son image et son public. PUF, Paris (1961)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Velcin, J., Ganascia, JG. (2004). Modeling Default Induction with Conceptual Structures. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, TW. (eds) Conceptual Modeling – ER 2004. ER 2004. Lecture Notes in Computer Science, vol 3288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30464-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-30464-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23723-5
Online ISBN: 978-3-540-30464-7
eBook Packages: Springer Book Archive