Abstract
Recommender systems, notably collaborative and hybrid information filtering approaches, vitally depend on neighborhood formation, i.e., selecting small subsets of most relevant peers from which to receive personal product recommendations. However, common similarity-based neighborhood forming techniques imply various drawbacks, rendering the conception of decentralized recommender systems virtually impossible. We advocate trust metrics and trust-driven neighborhood formation as an appropriate surrogate, and outline various additional benefits of harnessing trust networks for recommendation generation purposes. Moreover, we present an implementation of one suchlike trust-based recommender and perform empirical analysis to underpin its fitness when coupled with an intelligent, content-based filter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: New Security Paradigms Workshop, Cumbria, UK, pp. 48–60 (September 1997)
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Berscheid, E.: Interpersonal attraction. In: Gilbert, D., Fiske, S., Lindzey, G. (eds.) The Handbook of Social Psychology, 4th edn., vol. II, McGraw-Hill, New York (1998)
Beth, T., Borcherding, M., Klein, B.: Valuation of trust in open networks. In: Proceedings of the 1994 European Symposium on Research in Computer Security, pp. 3–18 (1994)
Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence, Madison, WI, USA, July 1998, pp. 43–52. Morgan Kaufmann, San Francisco (1998)
Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 5, 290–297 (1959)
Golbeck, J., Parsia, B., Hendler, J.: Trust networks on the Semantic Web. In: Proceedings of Cooperative Intelligent Agents, Helsinki, Finland (August 2003)
Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative filtering to weave an information tapestry. Communications of the ACM 35(12), 61–70 (1992)
Guha, R.: Open rating systems. Tech. rep., Stanford Knowledge Systems Laboratory, Stanford, CA, USA (2003)
Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, Philadelphia, PA, USA, pp. 241–250 (2000)
Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)
Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems 22(1), 116–142 (2004)
Huang, Z., Chung, W., Ong, T.-H., Chen, H.: A graph-based recommender system for digital library. In: Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries, Portland, OR, USA, pp. 65–73. ACM Press, New York (2002)
Kautz, H., Selman, B., Shah, M.: Referral Web: Combining social networks and collaborative filtering. Communications of the ACM 40(3), 63–65 (1997)
Konstan, J.: Introduction to recommender systems: Algorithms and evaluation. ACM Transactions on Information Systems 22(1), 1–4 (2004)
Lam, S., Riedl, J.: Shilling recommender systems for fun and profit. In: Proceedings of the13th Conference on World Wide Web, pp. 393–402. ACM Press, New York (2004)
Levien, R., Aiken, A.: Attack-resistant trust metrics for public key certification. In: Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, USA (January 1998)
Marsh, S.: Formalising Trust as a Computational Concept. PhD thesis, Department of Mathematics and Computer Science, University of Stirling, Stirling, UK (1994)
Massa, P., Bhattacharjee, B.: Using trust in recommender systems: an experimental analysis. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, Springer, Heidelberg (2004)
Middleton, S., Alani, H., Shadbolt, N., De Roure, D.: Exploiting synergy between ontologies and recommender systems. In: Proceedings of the WWW 2002 International Workshop on the Semantic Web, Maui, HW, USA, May 2002. CEUR Workshop Proceedings, vol. 55 (2002)
Montaner, M.: Collaborative Recommender Agents Based on Case-based Reasoning and Trust. PhD thesis, Universitat de Girona, Girona, Spain (2003)
Mui, L., Szolovits, P., Ang, C.: Collaborative sanctioning: Applications in restaurant recommendations based on reputation. In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal, Canada, pp. 118–119. ACM Press, New York (2001)
Olsson, T.: Decentralized social filtering based on trust. In: Working Notes of the AAAI 1998 Recommender Systems Workshop, Madison, WI, USA (1998)
O’Mahony, M., Hurley, N., Kushmerick, N., Silvestre, G.: Collaborative recommendation: A robustness analysis. ACM Transactions on Internet Technology 4(3) (August 2004)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the Web. Tech. rep., Stanford Digital Library Technologies Project (1998)
Pazzani, M.: A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review 13(5-6), 393–408 (1999)
Quillian, R.: Semantic memory. In: Minsky, M. (ed.) Semantic Information Processing, pp. 227–270. MIT Press, Boston (1968)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, MN, USA, pp. 158–167. ACM Press, New York (2000)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of dimensionality reduction in recommender systems - a case study. In: ACM WebKDD Workshop, Boston, MA, USA (August 2000)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference, Hong Kong, China (May 2001)
Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: Proceedings of the ACM CHI 1995, Conference on Human Factors in Computing Systems, vol. 1, pp. 210–217 (1995)
Sinha, R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: Proceedings of the DELOS-NSFWorkshop on Personalization and Recommender Systems in Digital Libraries, Dublin, Ireland (June 2001)
Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)
Ziegler, C.-N., Lausen, G.: Analyzing correlation between trust and user similarity in online communities. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 251–265. Springer, Heidelberg (2004)
Ziegler, C.-N., Lausen, G.: Spreading activation models for trust propagation. In: Proceedings of the IEEE International Conference on e-Technology, e-Commerce, and e-Service, Taipei, Taiwan, March 2004, IEEE Computer Society Press, Los Alamitos (2004)
Ziegler, C.-N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of product recommendations. In: Proceedings of the 2004 ACM CIKM Conference on Information and Knowledge Management, Washington D.C., USA, November 2004, ACM Press, New York (2004)
Ziegler, C.-N., Schmidt-Thieme, L., Lausen, G.: Exploiting semantic product descriptions for recommender systems. In: Proceedings of the 2nd ACM SIGIR Semantic Web and Information Retrieval Workshop 2004, Sheffield, UK (July 2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ziegler, CN., Lausen, G. (2004). Paradigms for Decentralized Social Filtering Exploiting Trust Network Structure. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. OTM 2004. Lecture Notes in Computer Science, vol 3291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30469-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-30469-2_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23662-7
Online ISBN: 978-3-540-30469-2
eBook Packages: Springer Book Archive