Skip to main content

Autonomic Storage System Based on Automatic Learning

  • Conference paper
High Performance Computing - HiPC 2004 (HiPC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3296))

Included in the following conference series:

  • 685 Accesses

Abstract

In this paper, we present a system capable of improving the I/O performance in an automatic way. This system is able to learn the behavior of the applications running on top and find the best data placement in the disk in order to improve the I/O performance. This system is built by three independent modules. The first one is able to learn the behavior of a workload in order to be able to reproduce its behavior later on, without a new execution. The second module is a drive modeler that is able to learn how a storage drive works taking it as a “black box”. Finally, the third module generates a set of placement alternatives and uses the afore mentioned models to predict the performance each alternative will achieve. We tested the system with five benchmarks and the system was able to find better alternatives in most cases and improve the performance significantly (up to 225%). Most important, the performance predicted where always very accurate (less that 10% error).

This work was supported in part by a grant from FONACIT (Venezuela) which is gratefully acknowledged, by the Ministry of Science and Technology (Spain), and by FEDER funds of the European Union under grants TIC2001-0995-C02-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hidrobo, F., Cortes, T.: Towards a Zero-Knowledge Model for Disk Drives. In: Proceedings of the AMS, Seattle, WA, USA. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  2. Smith, K.A., Seltzer, M.I.: File System Aging Increasing the Relevance of File System Benchmark. In: Proceedings of SIGMETRICS (1997)

    Google Scholar 

  3. Ruemmler, C., Wilkes, J.: An introduction to disk drive modeling. IEEE Computer 27, 17–28 (1994)

    Article  Google Scholar 

  4. Ganger, G., Worthington, B., Patt, Y.: The DiskSim Simulation Environment (Version 2.0) (2004), http://www.ece.cmu.edu/~ganger/disksim/

  5. Schindler, J., Ganger, G.R.: Automated Disk Drive Characterization. In: Proceedings of SIGMETRICS, Santa Clara, CA, USA, pp. 112–113. ACM Press, New York (2000)

    Chapter  Google Scholar 

  6. Shriver, E., Merchant, A., Wilkes, J.: An analytic behavior model for disk drives with readahead caches and requests reordering. In: SIGMETRICS, Madison, Wisconsin, USA, pp. 182–191. ACM Press, New York (1998)

    Google Scholar 

  7. Thornock, N.C., Tu, X.H., kelly Flanagan, J.: A Stochastic Disk I/O Simulation Technique. In: Proceedings of Winter Simulation Conference, Atlanta, GA, USA, pp. 1079–1086. ACM Press, New York (1997)

    Chapter  Google Scholar 

  8. Anderson, E.: Simple table-based modeling of storage devices. Technical Report HPL-SSP-2001-04, HP Laboratories (2001), http://www.hpl.hp.com/SSP/papers/

  9. Kotz, D., Nieuwejaar, N.: Dynamic File-Access Characteristics of a Production Parallel Scientific Workload. In: Proceedings of Supercomputing, pp. 640–649. IEEE Computer Society Press, Washington (1994)

    Chapter  Google Scholar 

  10. Kroeger, T.M., Long, D.D.: The Case for Efficient File Access Pattern Modeling. In: Proceedings of HotOS, AZ, USA, pp. 14–19. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  11. Ware, P.P., Page Jr., T.W., Nelson, B.L.: Modeling File-system Input Traces via a Two-level Arrival Process. In: Proceedings of the 28th Conference on Winter Simulation, Coronado, California, United States, pp. 1230–1237. ACM Press, New York (1996)

    Chapter  Google Scholar 

  12. Ware, P.P., Page Jr., T.W.: Automatic Modeling of File System Workloads Using Two-Level Arrival Processes. ACM TOMACS 8, 305–330 (1998)

    Article  MATH  Google Scholar 

  13. Ruemmler, C., Wilkes, J.: UNIX Disk Access Patterns. In: Proceedings of Winter USENIX Conference, San Diego, CA, USA, pp. 405–420 (1993)

    Google Scholar 

  14. Ganger, G.R.: Generating Representative Synthetic Workloads. An Unsolved Problem. In: Proceedings of 21st International Computer Measurement Group Conference, Nashville, TN, USA, pp. 1263–1269. Computer Measurement Group (1995)

    Google Scholar 

  15. Gómez, M.E., Santoja, V.: A new approach in the analysis and modeling of disk access pattern. In: Proceedings of ISPASS, Austin, Texas. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  16. Madhyastha, T., Reed, D.: Input/Output Access Pattern Classification Using Hidden Markov Models. In: IOPADS, San Jose, CA, USA. ACM Press, New York (1997)

    Google Scholar 

  17. Oly, J.: Markov Model Prediction of I/O requests for Scientific Applications. Master’s project, University of Illinois at Urbana-Champaign (2000)

    Google Scholar 

  18. Vongsathorn, P., Carson, S.: A system for adaptive disk rearrangement. Software - Practice and Experience 20, 225–242 (1990)

    Article  Google Scholar 

  19. Akyürek, S., Salem, K.: Adaptive Block Rearrangement. ACM TOCS 13, 89–121 (1995)

    Article  Google Scholar 

  20. Alvarez, G., Borowsky, E., Go, S., Romer, T., Becker-Szendy, R., Golding, R., Merchant, A., Spasojevic, M., Veitch, A., Wilkes, J.: MINERVA: an automated resource provisioning tool for large-scale storage systems. TOCS 19, 483 (2001)

    Article  Google Scholar 

  21. Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., Veitch, A.: Hippodrome: running circles around storage administration. In: Proceedings of FAST, Monterey, CA, USA, pp. 175–188. USENIX, Berkeley (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hidrobo, F., Cortes, T. (2004). Autonomic Storage System Based on Automatic Learning. In: Bougé, L., Prasanna, V.K. (eds) High Performance Computing - HiPC 2004. HiPC 2004. Lecture Notes in Computer Science, vol 3296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30474-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30474-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24129-4

  • Online ISBN: 978-3-540-30474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics