Skip to main content

Cell-Oriented Modeling of In Vitro Capillary Development

  • Conference paper
Cellular Automata (ACRI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Included in the following conference series:

Abstract

We introduce a Cellular Potts model (a cellular-automaton-based Monte-Carlo model) of in vitro capillary development, or angiogenesis. Our model derives from a recent continuum model, which assumes that vascular endothelial cells chemotactically attract each other. Our discrete model is “cell based.” Modeling the cells individually allows us to assign different physicochemical properties to each cell and to study how these properties affect the vascular pattern. Using the model, we assess the roles of intercellular adhesion, cell shape and chemoattractant saturation in in vitro capillary development. We discuss how our computational model can serve as a tool for experimental biologists to “pre-test” hypotheses and to suggest new experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. Tutorial Texts in Optical Engin., vol. TT59. SPIE Press, Bellingham (2003)

    Google Scholar 

  2. Segura, I., Serrano, A., De Buitrago, G.G., Gonzalez, M.A., Abad, J.L., Claveria, C., Gomez, L., Bernad, A., Martinez-A, C., Riese, H.H.: Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J. 16, 833–841 (2002)

    Article  Google Scholar 

  3. Chen, J., Brodsky, S., Li, H., Hampel, D.J., Miyata, T., Weinstein, T., Gafter, U., Norman, J.T., Fine, L.G., Goligorsky, M.S.: Delayed branching of endothelial capillary-like cords in glycated collagen I is mediated by early induction of PAI-1. Am. J. Physiol.-Renal 281, F71–F80 (2001)

    Google Scholar 

  4. Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  5. Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation morphogenesis and burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)

    Google Scholar 

  6. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)

    Article  Google Scholar 

  7. Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44, 271–282 (1996)

    Article  Google Scholar 

  8. Manoussaki, D.: A mechanochemical model of angiogenesis and vasculogenesis. ESAIM-Math. Model. Num. 37, 581–599 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A., Miyoshi, F., Naito, Y., Nakayama, Y., Tomita, M.: E-cell 2: Multi-platform e-cell simulation system. Bioinformatics 19, 1727–1729 (2003)

    Article  Google Scholar 

  10. Silicon cell project, http://www.siliconcell.net

  11. Savill, N.J., Hogeweg, P.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184, 229–235 (1997)

    Article  Google Scholar 

  12. Marée, A.F.M., Hogeweg, P.: How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. P. Natl. Acad. Sci. USA 98, 3879–3883 (2001)

    Article  Google Scholar 

  13. Zajac, M., Jones, G.L., Glazier, J.A.: Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000)

    Article  Google Scholar 

  14. Turner, S., Sherratt, J.A.: Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85–100 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kiskowski, M.A., Alber, M.S., Thomas, G.L., Glazier, J.A., Bronstein, N.B., Pu, J., Newman, S.A.: Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol. 271, 372–387 (2004)

    Article  Google Scholar 

  16. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)

    Article  Google Scholar 

  17. Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A.: CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129–1137 (2004)

    Article  Google Scholar 

  18. Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203, 317–333 (2000)

    Article  Google Scholar 

  19. Jiang, Y., Swart, P.J., Saxena, A., Asipauskas, M., Glazier, J.A.: Hysteresis and avalanches in two-dimensional foam rheology simulations. Phys. Rev. E 59, 5819–5832 (1999)

    Article  Google Scholar 

  20. Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003)

    Article  Google Scholar 

  21. LaRue, A.C., Mironov, V.A., Argraves, W.S., Czirók, A., Fleming, P.A., Drake, C.J.: Patterning of embryonic blood vessels. Dev. Dynam. 228, 21–29 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merks, R.M.H., Newman, S.A., Glazier, J.A. (2004). Cell-Oriented Modeling of In Vitro Capillary Development. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics