Abstract
Schema matching is important as a prerequisite to the transformation of XML documents with different schemas. This paper presents a schema matching algorithm based on a dynamic ontology. The proposed algorithm consists of two steps: preliminary matching relationships between leaf nodes in the two schemas are computed based on the ontology and a proposed leaf node similarity, and final matchings are extracted based on a proposed path similarity. Particularly, unlike static ontologies of previous works, the proposed ontology is updated by user feedback for a sophisticated schema matching. Furthermore, since the ontology can describe various relationships such as IsA or PartOf, the method can compute not only simple matchings but also complex matchings. Experimental results with various XML schemas show that the proposed method is superior to previous works.
This works was supported by the Korea Research Foundation Grant(KRF-2003-003-D00429)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
World Wide Web Consortium, Extensible Markup Language (XML) 1.0 (2 edn.), W3C Recommendation (2000), http://www.w3c.org/TR/REC-xml
World Wide Web Consortium, XML Schema 1.0, W3C Recommendation (2001), http://www.w3.org/TR/xmlschema-0/
World Wide Web Consortium, XSL Transformations (XSLT) 1.0, W3C Recommendation (1999), http://www.w3.org/TR/1999/REC-xslt-19991116
Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB Journal 10(4), 334–350 (2001)
Xu, L., Embley, D.W.: Discovering direct and indirect matches for schema elements. In: Proc. 8th Conf. DASFAA, pp. 39–46 (2003)
Dhamankar, R., Lee, Y., Doan, A., Halevy, A.: iMAP: Discovering Complex Semantic Mappings between Database Schemas. In: Proc. Int‘’l. Conf. SIGMOD on Management of Data (2004)
Li, W.-S., Clifton, C.: Semantic Integration in Heterogeneous Databases Using Neural Networks. In: Proc. 20th Int’l. Conf. VLDB, pp. 1–12 (1994)
Bergamaschi, S., Castano, S., De Capitani di Vimercati, S., Montanari, S., Vincini, M.: An Intelligent Approach to Information Integration. In: Proc. Int‘l Conf. on Formal Ontology in Information Systems, pp. 253–267 (1998)
Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Translation. In: Proc. 24th Int’l. Conf. on VLDB, pp. 122–133 (1998)
Lerner, B.S.: A Model for Compound Type Changes Encountered in Schema Evolution. ACM Transactions on Database Systems 25(1), 83–127 (2000)
Doan, A., Domingos, P., Halevy, A.: Learning to Match Schemas of Data Sources: A Multistrategy Approach. Machine Learning 50(3), 279–301 (2003)
Miller, R.J., Haas, L.M., Hernandez, M.A., Yan, L., Howard Ho, C.T., Fagin, R., Popa, L.: The Clio Project: Managing Heterogeneity. SIGMOD Record 30(1), 78–83 (2001)
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proc. 27th Int‘l. Conf. VLDB, pp. 49–58 (2001)
Su, H., Kuno, H., Rundensteiner, E.A.: Automating the Transformation of XML Documents. In: Proc. 3rd Int‘l. Workshop on Web Information and Data Management (WIDM), pp. 68–75 (2001)
Lee, M.L., Hsu, W., Yang, L., Yang, X.: XClust: Clustering XML Schemas for Effective Integration. In: Proc. 11th Int’l. Conf. on Information and Knowledge Management, pp. 292–299 (2002)
Do, H.-H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching Approaches. In: Proc. 27th Int’l. Conf. VLDB, pp. 610–621 (2002)
Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding – A Versatile Graph Matching Algorithm. In: Proc. 18th Int‘l. Conf. on Data Engineering, pp. 117–128 (2002)
Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, JS., Lee, KH. (2004). XML Schema Matching Based on Incremental Ontology Update. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds) Web Information Systems – WISE 2004. WISE 2004. Lecture Notes in Computer Science, vol 3306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30480-7_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-30480-7_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23894-2
Online ISBN: 978-3-540-30480-7
eBook Packages: Springer Book Archive