Skip to main content

Ring Signature Schemes for General Ad-Hoc Access Structures

  • Conference paper
Security in Ad-hoc and Sensor Networks (ESAS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3313))

Included in the following conference series:

  • 743 Accesses

Abstract

In a ring signature scheme for ad-hoc access structures, members of a set can freely choose a family of sets including their own set. Then they use their secret keys and the public keys of the other users to compute a signature which enjoys two properties: the external verifier is convinced that all members of some set in the access structure have cooperated to compute the signature; but he has no information about which is the set whose members have actually signed the message.

In this work we propose such a scheme, based on the ideas of a ring signature scheme for discrete logarithm scenarios. The scheme allows the choice of any general access structure, not only threshold ones, as it happened with previous constructions. We prove that the resulting scheme is anonymous and existentially unforgeable under chosen message attacks, assuming that the Discrete Logarithm problem is hard to solve.

This work was partially supported by Spanish Ministerio de Ciencia y Tecnología under project TIC 2003-00866.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1 −out−of− n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  4. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures for ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)

    Google Scholar 

  6. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proceedings of STOC 1998, pp. 209–218 (1998)

    Google Scholar 

  7. Chen, L., Kudla, C., Patterson, K.G.: Concurrent signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

    Google Scholar 

  9. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptative chosen-message attacks. SIAM Journal of Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)

    Article  MATH  Google Scholar 

  14. Rivest, R., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4, 161–174 (1991)

    Article  MATH  Google Scholar 

  16. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  17. Sui Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herranz, J., Sáez, G. (2005). Ring Signature Schemes for General Ad-Hoc Access Structures. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds) Security in Ad-hoc and Sensor Networks. ESAS 2004. Lecture Notes in Computer Science, vol 3313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30496-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30496-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24396-0

  • Online ISBN: 978-3-540-30496-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics