Skip to main content

Blind Spontaneous Anonymous Group Signatures for Ad Hoc Groups

  • Conference paper
Security in Ad-hoc and Sensor Networks (ESAS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 3313))

Included in the following conference series:

Abstract

Spontaneous anonymous group (SAG) cryptography is a fundamental alternative to achieve thresholding without group secret or setup. It has gained wide interests in applications to ad hoc groups. We present a general construction of blind SAG 1-out-of-n and t-out-of-n signature schemes from essentially any major blind signature. In the case when our scheme is built from blind Schnorr (resp. Okamoto-Schnorr) signature, the parallel one-more unforgeability is reduced to Schnorr’s ROS Problem in the random oracle model plus the generic group model. In the process of our derivations, we obtain a generalization of Schnorr’s result [17] from single public key to multiple public keys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bellare, M., Micciancio, D.: A new paradigm for collision-free hasing: incrementality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer, Heidelberg (1997)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)

    Chapter  Google Scholar 

  4. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: EUROCRYPT 2001. LNCS, vol. 1294, pp. 93–118. Springer, Heidelberg (2001)

    Google Scholar 

  8. Chaum, D.: Blind signatures for untraceable payments. In: Proc. CRYPTO 1982, pp. 199–203. Plenum Press, New York (1982)

    Google Scholar 

  9. Chaum, D.: Security without identification: Transaction systems to make big brother obsolete. CACM 29(10), 1030–1044 (1985)

    Google Scholar 

  10. Cramer, R., DamgÃ¥rd, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  11. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Proc. First International Workshop on Information Security, ISW 1997. LNCS, vol. 1196, pp. 158–173. Springer, Heidelberg (1997)

    Google Scholar 

  12. Liu, J.K., Wei, V.K., Wong, D.S.: Cryptanalyzing Bresson, et al.’s spontaneous anonymous group threshold signature for ad hoc groups and patching via updating Cramer, et al.’s threshold proof-of-knowledge. eprint, 2004(042) (2004)

    Google Scholar 

  13. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable and culpable ring signatures. eprint, 2004(027) (2004)

    Google Scholar 

  14. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55, 165–172 (1994)

    Google Scholar 

  15. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)

    Google Scholar 

  16. Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Schnorr, C.-P.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, p. 1. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Schnorr, C.P.: Efficient identication and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

    Google Scholar 

  19. Shamir, A.: How to share a secret. Communications of the ACM 22(2), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  21. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, T.K., Fung, K., Liu, J.K., Wei, V.K. (2005). Blind Spontaneous Anonymous Group Signatures for Ad Hoc Groups. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds) Security in Ad-hoc and Sensor Networks. ESAS 2004. Lecture Notes in Computer Science, vol 3313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30496-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30496-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24396-0

  • Online ISBN: 978-3-540-30496-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics