Abstract
This paper proposes the algorithm that additional term is added to an objective function of noise clustering algorithm to define fuzzy subspaces in a fuzzy regression manner to identify fuzzy subspaces and parameters of the consequent parts simultaneously and obtain robust performance against outliers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its applications to Modeling and Control. IEEE Trans. Systems, Man, Cybernetics smc-15, 116–132 (1985)
Chuang, C.-C., Su, S.-F., Chen, S.-S.: Robust TSK Fuzzy Modeling for Function Approximation with Outliers. IEEE Tans. Fuzzy Systems 9, 810–821 (2001)
Dave, R.N., Krishnapuram, R.: Robust clustering Methods: A Unified View. IEEE Trans. Fuzzy Systems 5, 270–293 (1997)
Kim, E., Park, M., Ji, S., Park, M.: A New Approach to Fuzzy Modeling. IEEE Trans. Fuzzy Systems 5, 328–337 (1997)
Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, Englewood Cliffs (1997)
Dave, R.N., Sen, S.: Robust Fuzzy Clustering of Relational Data. IEEE Trans. Fuzzy Systems 10, 713–727 (2002)
Frigui, H., Krishnapuram, R.: A robust competitive Clustering Algorithm with Applications in Computer Vision. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 450–465 (1999)
Krishnapuram, R., Keller, M.: A Possibilistic Approach to Clustering. IEEE Trans. Fuzzy systems 1, 98–110 (1993)
Chen, D.S., Jain, R.C.: A robust back-propagation learning algorithm for function approximation. IEEE Trans. Neural Networks 5, 467–479 (1994)
Connor, J.T., Martin, R.D., Atlas, L.E.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks 5, 240–254 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, K., Kyung, K.M., Park, CW., Kim, E., Park, M. (2004). Robust TSK Fuzzy Modeling Approach Using Noise Clustering Concept for Function Approximation. In: Zhang, J., He, JH., Fu, Y. (eds) Computational and Information Science. CIS 2004. Lecture Notes in Computer Science, vol 3314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30497-5_84
Download citation
DOI: https://doi.org/10.1007/978-3-540-30497-5_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24127-0
Online ISBN: 978-3-540-30497-5
eBook Packages: Computer ScienceComputer Science (R0)