Skip to main content

PASL: Prediction of the Alpha-Helix Transmembrane by Pruning the Subcellular Location

  • Conference paper
Computational and Information Science (CIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3314))

Included in the following conference series:

  • 914 Accesses

Abstract

We have developed a software tool, called PASL, which predicts the transmembrane region and its topology by pruning the subcellular location. The main virtues of PASL are that it discriminates the integral proteins of the plasma membrane from the intracellular membranes, and it eliminates the possibility of misrecognition of the signal peptide as a transmembrane region. The transmembrane region prediction algorithm, which is based on the Hidden Markov Model, and the ER signal peptide detection architecture, which is based on neural networks, have been used for the actual implementation of a prototype. This paper mainly describes the prototype and how it works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  Google Scholar 

  2. Tusnady, G.E., Simon, I.: The HMMTOP Transmembrane Topology Prediction Server. Bioinformatics 17, 849–850 (2001)

    Article  Google Scholar 

  3. Moller, S., Croning, M.D., Apweiler, R.: Evaluation of Methods for the Prediction of Membrane Spanning Regions. Bioinformatics 17, 646–653 (2001)

    Article  Google Scholar 

  4. Kim, M.K., Park, H.S., Park, S.H.: Prediction of Plasma Membrane Spanning Region and Topology Using Hidden Markov Model and Neural Network. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 270–277. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Lao, D.M., Arai, M., Ikeda, M., Shimizu, T.: The Presence of Signal Peptide Significantly Affects Transmembrane Topology Prediction. Bioinformatics 18, 1562–1566 (2002)

    Article  Google Scholar 

  6. Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G.: Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites. Protein Eng. 10, 1–6 (1997)

    Article  Google Scholar 

  7. Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting Subcellular Localization of Proteins based on their N-terminal Amino Acid Sequence. J. Mol. Biol. 300, 1005–1016 (2000)

    Article  Google Scholar 

  8. Reinhardt, A., Hubbard, T.: Using Neural Networks for Prediction of the Subcellular Location of Proteins. Nucleic Acids Res. 26, 2230–2236 (1998)

    Article  Google Scholar 

  9. Park, K.J., Kanehisa, M.: Prediction of Protein Subcellular Locations by Support Vector Machines using Compositions of Amino Acids and Amino Acid Pairs. Bioinformatics 19, 1656–1663 (2003)

    Article  Google Scholar 

  10. Nakashima, H., Nishikawa, K.: Discrimination of Intracellular and Extracellular Proteins using Amino Acid Composition and Residue-Pair Frequencies. J. Mol. Biol. 238, 54–61 (1994)

    Article  Google Scholar 

  11. Moller, S., Kriventseva, E.V., Apweiler, R.: A Collection of Well-Characterised Integral Membrane Proteins. Bioinformatics 16, 1159–1160 (2000)

    Article  Google Scholar 

  12. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT Protein Knowledgebase and its Supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seol, Y.J., Park, H.S., Yoo, SJ. (2004). PASL: Prediction of the Alpha-Helix Transmembrane by Pruning the Subcellular Location. In: Zhang, J., He, JH., Fu, Y. (eds) Computational and Information Science. CIS 2004. Lecture Notes in Computer Science, vol 3314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30497-5_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30497-5_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24127-0

  • Online ISBN: 978-3-540-30497-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics