Abstract
We have developed a software tool, called PASL, which predicts the transmembrane region and its topology by pruning the subcellular location. The main virtues of PASL are that it discriminates the integral proteins of the plasma membrane from the intracellular membranes, and it eliminates the possibility of misrecognition of the signal peptide as a transmembrane region. The transmembrane region prediction algorithm, which is based on the Hidden Markov Model, and the ER signal peptide detection architecture, which is based on neural networks, have been used for the actual implementation of a prototype. This paper mainly describes the prototype and how it works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes. J. Mol. Biol. 305, 567–580 (2001)
Tusnady, G.E., Simon, I.: The HMMTOP Transmembrane Topology Prediction Server. Bioinformatics 17, 849–850 (2001)
Moller, S., Croning, M.D., Apweiler, R.: Evaluation of Methods for the Prediction of Membrane Spanning Regions. Bioinformatics 17, 646–653 (2001)
Kim, M.K., Park, H.S., Park, S.H.: Prediction of Plasma Membrane Spanning Region and Topology Using Hidden Markov Model and Neural Network. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 270–277. Springer, Heidelberg (2004)
Lao, D.M., Arai, M., Ikeda, M., Shimizu, T.: The Presence of Signal Peptide Significantly Affects Transmembrane Topology Prediction. Bioinformatics 18, 1562–1566 (2002)
Nielsen, H., Engelbrecht, J., Brunak, S., von Heijne, G.: Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites. Protein Eng. 10, 1–6 (1997)
Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting Subcellular Localization of Proteins based on their N-terminal Amino Acid Sequence. J. Mol. Biol. 300, 1005–1016 (2000)
Reinhardt, A., Hubbard, T.: Using Neural Networks for Prediction of the Subcellular Location of Proteins. Nucleic Acids Res. 26, 2230–2236 (1998)
Park, K.J., Kanehisa, M.: Prediction of Protein Subcellular Locations by Support Vector Machines using Compositions of Amino Acids and Amino Acid Pairs. Bioinformatics 19, 1656–1663 (2003)
Nakashima, H., Nishikawa, K.: Discrimination of Intracellular and Extracellular Proteins using Amino Acid Composition and Residue-Pair Frequencies. J. Mol. Biol. 238, 54–61 (1994)
Moller, S., Kriventseva, E.V., Apweiler, R.: A Collection of Well-Characterised Integral Membrane Proteins. Bioinformatics 16, 1159–1160 (2000)
Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT Protein Knowledgebase and its Supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seol, Y.J., Park, H.S., Yoo, SJ. (2004). PASL: Prediction of the Alpha-Helix Transmembrane by Pruning the Subcellular Location. In: Zhang, J., He, JH., Fu, Y. (eds) Computational and Information Science. CIS 2004. Lecture Notes in Computer Science, vol 3314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30497-5_95
Download citation
DOI: https://doi.org/10.1007/978-3-540-30497-5_95
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24127-0
Online ISBN: 978-3-540-30497-5
eBook Packages: Computer ScienceComputer Science (R0)