Skip to main content

Machine Learning by Multi-feature Extraction Using Genetic Algorithms

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2004 (IBERAMIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3315))

Included in the following conference series:

Abstract

Constructive Induction methods aim to solve the problem of learning hard concepts despite complex interaction in data. We propose a new Constructive Induction method based on Genetic Algorithms with a non-algebraic representation of features. The advantage of our method to some other similar methods is that it constructs and evaluates a combination of features. Evaluating constructed features together, instead of considering them one by one, is essential when number of interacting attributes is high and there are more than one interaction in concept. Our experiments show the effectiveness of this method to learn such concepts.

This work has been partially supported by the Spanish Interdepartmental Commission for Science and Technology (CICYT), under Grant number TIC2002-1948.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases. Department of Information and Computer Science. University of California, Irvine,CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  2. Rendell, L.A., Seshu, R.: Learning hard concepts through constructive induction: framework and rationale. Computational Intelligence 6, 247–270 (1990)

    Article  Google Scholar 

  3. Freitas, A.: Understanding the crucial role of attribute interaction in data mining. Artificial Intelligence Review 16(3), 177–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. P´erez, E.: Learning despite complex interaction: an approach based on relational operators, PhD Thesis, University of Illinois, Urbana-Champaign (1997)

    Google Scholar 

  5. Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Molecular Biology 202, 865–884 (August 1988)

    Article  Google Scholar 

  6. Dietterich, T.G., Michalski, R.S.: Inductive learning of structural description: evaluation criteria and comparative review of selected methods. Artificial Intelligence 16(3), 257–294 (1981)

    Article  MathSciNet  Google Scholar 

  7. Aha, D.W.: Incremental constructive induction: an instance-based approach. In: Proc. of the Eighth International Workshop on Machine Learning, Evanston, Illinois, pp. 117–121. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  8. Shafti, L.S., P´erez, E.: Genetic approach to constructive induction based on nonalgebraic feature representation. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 509–520. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan (1975)

    Google Scholar 

  10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1999)

    Google Scholar 

  11. Samuel, A.: Some studies in machine learning using the game of checkers II: recent progress. IBM J. Res. Develope 11, 601–617 (1967)

    Article  Google Scholar 

  12. Zupan, B., Bratko, I., Bohanec, M., Demsar, J.: Function decomposition in machine learning. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 71–101. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Bensusan, H., Kuscu, I.: Constructive induction using genetic programming. In: Fogarty, T., Venturini, G. (eds.) Proc. of ICML 1996 Workshop of Evolutionary Computing and Machine Learning, Bari, Italy (1996)

    Chapter  Google Scholar 

  14. Hu, Y.: A genetic programming approach to constructive induction. In: Proc. of the Third Annual Genetic Programming Conference, Madison, Wisconsin, pp. 146–157. Morgan Kauffman, San Francisco (1998)

    Google Scholar 

  15. Vafaie, H., De Jong, K.: Feature space transformation using genetic algorithms. IEEE Intelligent Systems and Their Applications 13(2), 57–65 (March-April 1998)

    Article  Google Scholar 

  16. Ritthoff, O., Klinkenberg, R., Fischer, S., Mierswa, I.: A hybrid approach to feature selection and generation using an evolutionary algorithm. In: Proc. of UKWorkshop on Computational Intelligence (September 2002), The University of Birmingham (2002)

    Google Scholar 

  17. P´erez, E., Rendell, L.A.: Using multidimensional projection to find relations. In: Proc. of the Twelfth International Conference on Machine Learning, Tahoe City, California (July 1995), pp. 447–455. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  18. Shafti, L.S., Pérez, E.: Constructive induction using non-algebraic feature representation. In: Proc. of the Third IASTED International Conference on Artificial Intelligence, pp. 134–139. Acta Press, Benalmadena (2003)

    Google Scholar 

  19. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using Genetic Algorithms for Concept Learning. Machine Learning 13, 161–139 (1993)

    Article  Google Scholar 

  20. Levine, D.: Users guide to the PGAPack parallel genetic algorithm library. Technical Report ANL-95/18, Argonne National Laboratory (January 1996)

    Google Scholar 

  21. Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, California (1993)

    Google Scholar 

  22. Pagallo, G., Haussler, D.: Boolean feature discovery in empirical learning. Machine Learning 5, 71–99 (1990)

    Article  Google Scholar 

  23. Ragavan, H., Rendell, L.A.: Lookahead feature construction for learning hard concepts. In: Proc. of the Tenth International Conference on Machine Learning, Amherst, Massachusetts, pp. 252–259. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shafti, L.S., Pérez, E. (2004). Machine Learning by Multi-feature Extraction Using Genetic Algorithms. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30498-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23806-5

  • Online ISBN: 978-3-540-30498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics