Skip to main content

A Statistical Validation of Vessel Segmentation in Medical Images

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2004 (IBERAMIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3315))

Included in the following conference series:

  • 980 Accesses

Abstract

Validations about contour detection for segmentation in medical images are traditionally carried out by visual human inspection. In this context, automatic and formal validation of results becomes essential. A formal non parametric statistical framework for validation of vessel detection in medical images is presented. To obtain a formal validation of the segmentation process, a statistical test about the vessel contour is developed. The test proposed measures the way that the obtained (segmented) vessel fits in the theoretical vessel model avoiding the human inspection used in other methods. This test is used in this paper to validate a segmentation method for vessel detection in medical images that cope with high noisy images for mammograms. Results in this paper show that our segmentation model is validated for vessel detection with a signification value less than 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pal, N.R., Pal, S.K.: A review on Image segmentation techniques. Pattern Recognition 29, 1277–1294

    Google Scholar 

  2. Zhang, Y.J., Gerbrands, J.: Objective and quantitative segmentation evaluation and comparison. Signal Processing 39, 43–54 (1994)

    Article  MATH  Google Scholar 

  3. Yasnoff, W.A., Mui, J.K., Bacus, J.W.: Error measures for scene segmentation. Pattern Recognition 9, 217–231

    Google Scholar 

  4. Rosenfeld, A., Davis, L.S.: Image segmentation and image models. Proc. IEEE 67, 764–772

    Google Scholar 

  5. Zhang, Y.J.: A Survey on Evaluation Methods For Image Segmentation. Pattern Recognition 29, 1335

    Google Scholar 

  6. Abdou, I.E., Pratt, K.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 67, 753–763

    Google Scholar 

  7. Ramesh, V., Haralick, R.M.: Performance Characterization of edge detectors. SPIEApplications of Artificial Intelligence 1708, 252–266

    Google Scholar 

  8. Zhu, Q.: Efficient evaluations of edge connectivity and width uniformity. Image and Vision Computing 14, 21–34

    Google Scholar 

  9. Kitchen, L., Rosenfeld, A.: Edge evaluation using local edge coherence. IEEE Trans. Systems, Man and Cybernetics 11, 597–605

    Google Scholar 

  10. Palmer, P.L., Dabis, H., Kittler, J.: A performance measure for boundary detection algorithms. Computer Vision and Image Understanding 63, 476–494

    Google Scholar 

  11. Cho, K., Meer, P., Cabrera, J.: Quantitative evaluation of performance through bootstrapping: Edge detection. In: IEEE Int’l Symp. Computer Vision, pp. 491–496.

    Google Scholar 

  12. Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: Comparison of Edge Detectors. Computer Vision and Image Understanding 69, 38–54

    Google Scholar 

  13. Fram, J.R., Deutsch, E.S.: On the quantitative evaluation of edge detection schemes and their comparison with human performance. IEEE transactions on computers c-24, 616–628

    Google Scholar 

  14. Bryant, D.J., Boulding, D.W.: Evaluation of edge operators using relative and absolute grading. In: Proc. IEEE Computer society conf. pattern recognition and image processing, pp. 138–145.

    Google Scholar 

  15. Strickland, R.N., Cheng, D.K.: Adaptable edge quality metric. Optical Eng. 32, 944–951

    Google Scholar 

  16. Jiang, X.Y., Hoover, A., Jean-Baptiste, G., Bowyer, K.: A methodology for evaluating edge detection techniques for range images. In: Proc. Asian conf. computer vision, pp. 415–419.

    Google Scholar 

  17. Kanungo, T., Jaisimha, M.Y., Palmer, J., Haralick, R.M.: A methodology for quantitative performance evaluation of detection algorithms. IEEE Transactions on Image Processing 4, 1667–1674

    Google Scholar 

  18. Weszka, J.S., Rosenfeld, A.: Threshold evaluation techniques. IEEE Transaction on Systems, Man, and Cybernetics SMC-8, 622–629

    Google Scholar 

  19. Zhang, W., Yoshida, H., Nishikawa, R.M., Doi, K.: Optimally weighted wavelet transform based on supervised training for detection of microcalcifications in digital mammograms. Medical Physics 25, 949–956

    Google Scholar 

  20. Valverde, F.L., Guil, N., Munoz, J.: Bayesian approach based on geometrical features for validation and tuning of solution in deformable models. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 865–874. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Cheung, K., Yeung, D., Chin, R.: On deformable models for visual pattern recognition. Pattern Recognition 35, 1507–1526

    Google Scholar 

  22. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision, 321–331

    Google Scholar 

  23. Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Transactions on Patterns Analysis and Machine Intelligence 12, 855–866

    Google Scholar 

  24. Williams, D.J., Shah, M.: A fast algorithm for active Contours and Curvature Estimation. Computer Vision, Graphics and Image Processing 55, 14–26

    Google Scholar 

  25. Valverde, F.L., Guil, N., Munoz, J.: A deformable model for image segmentation in noisy medical images. In: IEEE International Conference on Image Processing, ICIP 2001, pp. 82–85 (2001)

    Google Scholar 

  26. Valverde, F.L., Guil, N., Munoz, J.: Segmentation of vessels from mammograms using a deformable model. Computer Methods and Programs in Biomedicine 35, 233–247 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Valverde, F.L., Guil, N., Domínguez, E., Muñoz, J. (2004). A Statistical Validation of Vessel Segmentation in Medical Images. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30498-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23806-5

  • Online ISBN: 978-3-540-30498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics