Abstract
In this paper we address the problem of graph matching and graph classification through a kernelized version of the classical Softassign method. Our previous experiments with random-generated graphs have suggested that weighting the Softassign quadratic cost function with distributional information coming from kernel computations on graphs yields a slower decay of matching performance with increasing graph corruption. Here, we test this approach in the context of automatically building graph prototypes and classifying graphs in terms of the distance to the closer prototype. In all cases we use unweighted graphs coming from real images and having sizes from 30 to 140 nodes. Our results show that this approach, consisting on applying graph kernel engineering to matching problems, has a practical use for image classification in terms of pure structural information.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bunke, H.: Recent Developments in Graph Matching. In: Proceedings of the International Conference on Pattern Recognition (ICPR 2000), vol. 2, pp. 2117–2124 (2000)
Bunke, H.: Error Correcting Graph Matching: On the Influence of the Underlying Cost Function. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(9), 917–922 (1999)
Chung, F.R.K.: Spectral Graph Theory. In: Conference Board of the Mathematical Sciences (CBMS) 92. American Mathematical Society (1997)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)
Finch, A.M., Wilson, R.C., Hancock, E.: An Energy Function and Continuous Edit Process for Graph Matching. Neural Computation 10(7), 1873–1894 (1998)
Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)
Hofmann, T., Puzicha, J.: Statistical Models for Co-occurrence Data. MIT AIMemo 1625, Cambridge (1998)
Gärtner: A Survey of Kernels for Structured Data. ACM SIGKDD Explorations Newsletter 5(1), 49–58 (2003)
Jiang, X., Münger, A., Bunke, H.: On Median Graphs: Properties, Algorithms, and Applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(10), 1144–1151 (2001)
Kondor, R.I., Lafferty, J.: Diffusion Kernels on Graphs and other Discrete Input Spaces. In: Sammut, C., Hoffmann, A.G. (eds.) Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002), pp. 315–322. Morgan Kaufmann, San Francisco (2002)
Li, S.Z.: Toward Global Solution to MAP Image Estimation: Using Common Structure of Local Solutions. In: Pelillo, M., Hancock, E.R. (eds.) EMMCVPR 1997. LNCS, vol. 1223, pp. 361–374. Springer, Heidelberg (1997)
Luo, B., Hancock, E.R.: Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(10), 1120–1136 (2001)
Luo, B., Wilson, R.C., Hancock, E.R.: A Spectral Approach to Learning Structural Variations in Graphs. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds.) ICVS 2003. LNCS, vol. 2626, pp. 407–417. Springer, Heidelberg (2003)
Lozano, M.A., Escolano, F.: EM Algorithm for Clustering an Ensemble of Graphs with Comb Matching. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 52–67. Springer, Heidelberg (2003)
Lozano, M.A., Escolano, F.: A significant improvement of softassign with diffusion kernels. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 76–84. Springer, Heidelberg (2004)
Müller, K.-R., Mika, S., Ratsch, G., Jsuda, K., Schölkopf, B.: An Introduction to Kernel-based Learning Algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)
Pelillo, M.: Replicator Equations, Maximal Cliques, and Graph Isomorphism. Neural Computation 11, 1933–1955 (1999)
Puzicha, J.: Histogram Clustering for Unsupervised Segmentation and Image Retrieval. Pattern Recognition Letters 20, 899–909 (1999)
Sanfeliu, A., Fu, K.S.: A Distance Measure Between Attributed Relational Graphs for Pattern Recognition. IEEE Transactions on Systems, Man, and Cybernetics 13, 353–362 (1983)
Serratosa, F., Alquézar, R., Sanfeliu, A.: Function-described graphs for modelling objects represented by sets of attributed graphs. Pattern Recognition 23(3), 781–798 (2003)
Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)
Smola, A., Schölkopf, B., Müller, K.-R.: The Connection between Regularization Operators and Support Vector Kernels. Neural Networks 11, 637–649 (1998)
Smola, A., Kondor, R.I.: Kernels and Regularization on Graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003)
Wilson, R.C., Hancock, E.R.: Structual Matching by Discrete Relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(6), 634–648 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lozano, M.A., Escolano, F. (2004). Structural Recognition with Kernelized Softassign. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-30498-2_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23806-5
Online ISBN: 978-3-540-30498-2
eBook Packages: Springer Book Archive