Skip to main content

Determination of Possible Minimal Conflict Sets Using Constraint Databases Technology and Clustering

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2004 (IBERAMIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3315))

Included in the following conference series:

  • 1043 Accesses

Abstract

Model-based Diagnosis allows the identification of the parts which fail in a system. The models are based on the knowledge of the system to diagnose, and can be represented by constraints associated to components. Inputs and outputs of components are represented as variables of those constraints, and they can be observable and non-observable depending on the situation of sensors. In order to obtain the minimal diagnosis in a system, an important issue is to find out the possible minimal conflicts in an efficient way.

In this work, we propose a new approach to automate and to improve the determination of possible minimal conflict sets. This approach has two phases. In the first phase, we determine components clusters in the system in order to reduce drastically the number of contexts to consider. In the second phase, we construct a reduced context network with the possible minimal conflicts. In this phase we use Gröbner bases reduction. A novel logical architecture of Constraint Databases is used to store the model, the components clusters and possible minimal conflict sets. The necessary information in each phase is obtained by using a standard query language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelligence 24, 347–410 (1984)

    Article  Google Scholar 

  2. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kleer, J.D., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems. Artificial Intelligence 56(2-3), 197–222 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldin, D., Kanellakis, P.: Constraint query algebras constraints. Journal E. F. editor (1996)

    Google Scholar 

  5. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. In: Symposium on Principles of Database Systems, pp. 299–313 (1990)

    Google Scholar 

  6. Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2001)

    Google Scholar 

  7. Kleer, J.D., Williams, B.: Diagnosing multiple faults. Art. Int (1987)

    Google Scholar 

  8. Kleer, J.D.: An assumption-based truth maintenance system. Artificial Intelligence 28(2), 127–161 (1986)

    Article  Google Scholar 

  9. Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232 (1985)

    Google Scholar 

  10. de la Banda, M.G., Stuckey, P., Wazny, J.: Finding all minimal unsatisfiable subsets. In: Proc. Of the 5th ACM Sigplan Internacional (2003)

    Google Scholar 

  11. Frisk, E.: Residual generator design for non-linear, polynomial systems - a gröbner basis approach. In: Proc. IFAC Safeprocess, Budapest (2000)

    Google Scholar 

  12. Gasca, R., Valle, C.D., Ceballos, R., Toro, M.: An integration of fdi and dx approaches to polinomial models. In: 14th International Workshop on principles of Diagnosis - DX (2003)

    Google Scholar 

  13. Pulido, J.: Posibles conflictos como alternativa al registro de dependencias en línea para el diagnóstico de sistemas continuos. PhD. degree, Universidad de Valladolid (2000)

    Google Scholar 

  14. Guernez, C., Petitot, M., Cassar, J., Staroswiecki, M.: Fault detection and isolation on non linear polynomial systems. In: 15th IMACS World Congress (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez-López, M.T., Ceballos, R., Gasca, R.M., Pozo, S. (2004). Determination of Possible Minimal Conflict Sets Using Constraint Databases Technology and Clustering. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30498-2_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23806-5

  • Online ISBN: 978-3-540-30498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics