Abstract
Model-based Diagnosis allows the identification of the parts which fail in a system. The models are based on the knowledge of the system to diagnose, and can be represented by constraints associated to components. Inputs and outputs of components are represented as variables of those constraints, and they can be observable and non-observable depending on the situation of sensors. In order to obtain the minimal diagnosis in a system, an important issue is to find out the possible minimal conflicts in an efficient way.
In this work, we propose a new approach to automate and to improve the determination of possible minimal conflict sets. This approach has two phases. In the first phase, we determine components clusters in the system in order to reduce drastically the number of contexts to consider. In the second phase, we construct a reduced context network with the possible minimal conflicts. In this phase we use Gröbner bases reduction. A novel logical architecture of Constraint Databases is used to store the model, the components clusters and possible minimal conflict sets. The necessary information in each phase is obtained by using a standard query language.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelligence 24, 347–410 (1984)
Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–96 (1987)
Kleer, J.D., Mackworth, A., Reiter, R.: Characterizing diagnoses and systems. Artificial Intelligence 56(2-3), 197–222 (1992)
Goldin, D., Kanellakis, P.: Constraint query algebras constraints. Journal E. F. editor (1996)
Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. In: Symposium on Principles of Database Systems, pp. 299–313 (1990)
Revesz, P.: Introduction to Constraint Databases. Springer, Heidelberg (2001)
Kleer, J.D., Williams, B.: Diagnosing multiple faults. Art. Int (1987)
Kleer, J.D.: An assumption-based truth maintenance system. Artificial Intelligence 28(2), 127–161 (1986)
Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, pp. 184–232 (1985)
de la Banda, M.G., Stuckey, P., Wazny, J.: Finding all minimal unsatisfiable subsets. In: Proc. Of the 5th ACM Sigplan Internacional (2003)
Frisk, E.: Residual generator design for non-linear, polynomial systems - a gröbner basis approach. In: Proc. IFAC Safeprocess, Budapest (2000)
Gasca, R., Valle, C.D., Ceballos, R., Toro, M.: An integration of fdi and dx approaches to polinomial models. In: 14th International Workshop on principles of Diagnosis - DX (2003)
Pulido, J.: Posibles conflictos como alternativa al registro de dependencias en línea para el diagnóstico de sistemas continuos. PhD. degree, Universidad de Valladolid (2000)
Guernez, C., Petitot, M., Cassar, J., Staroswiecki, M.: Fault detection and isolation on non linear polynomial systems. In: 15th IMACS World Congress (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gómez-López, M.T., Ceballos, R., Gasca, R.M., Pozo, S. (2004). Determination of Possible Minimal Conflict Sets Using Constraint Databases Technology and Clustering. In: Lemaître, C., Reyes, C.A., González, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2004. IBERAMIA 2004. Lecture Notes in Computer Science(), vol 3315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30498-2_94
Download citation
DOI: https://doi.org/10.1007/978-3-540-30498-2_94
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23806-5
Online ISBN: 978-3-540-30498-2
eBook Packages: Springer Book Archive