Skip to main content

A Genetic Approach to Optimizing the Values of Parameters in Reinforcement Learning for Navigation of a Mobile Robot

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

Reinforcement learning is a learning framework that is especially suited for obstacle avoidance and navigation of autonomous mobile robots, because supervised signals, hardly available in the real world, can be dispensed with. We have to determine, however, the values of parameters in reinforcement learning without prior information. In the present paper, we propose to use a genetic algorithm with inheritance for their optimization. We succeed in decreasing the average number of actions needed to reach a given goal by about 10-40% compared with reinforcement learning with non-optimal parameters, and in obtaining a nearly shortest path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Unsal, C., Kachroo, P., Bay, J.S.: Multiple Stochastic Learning Automata for Vehicle Path Control in an Automated Highway System. In: Proceedings of the 1999 IEEE Trans. Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 29, pp. 120–128 (1999)

    Google Scholar 

  3. Svinin, M.M., Yamada, K., Ueda, K.: Emergent synthesis of motion patterns for locomotion robots. Artificial Intelligence in Engineering 15(4), 353–363 (2001)

    Article  Google Scholar 

  4. Balkenius, C., Moren, J.: Dynamics of a classical conditioning model. Autonomous Robots 7, 41–56 (1999)

    Article  Google Scholar 

  5. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  6. Pettinger, J.E., Everson, R.M.: Controlling Genetic Algorithms with Reinforcement Learning. Department of Computer Science, School of Engneering and Computer Science, University of Exeter. EX4 4QF, UK (2003)

    Google Scholar 

  7. Calderoni, S., Marcenac, P.: MUTANT: a MultiAgent Toolkit for Artificial Life Simulation. In: The Proceedings of TOOLS-26 1998, Santa Barbara, California, August 3-7. IEEE, Los Alamitos (1998)

    Google Scholar 

  8. Lee, M.R., Rhee, H.: The effect of evolution in artificial life learning behavior. Journal of intelligent and robotic systems 30, 399–414 (2001)

    Article  MATH  Google Scholar 

  9. Abu-Zitar, R., Nuseirat, A.M.A.: A theoretical approach of an intelligent robot gripper to grasp polygon shaped objects. Journal of intelligent and robotic systems 31, 397–422 (2001)

    Article  MATH  Google Scholar 

  10. Lin, C.T., Jou, C.P.: GA-based fuzzy reinforcement learning for control of a magnetic bearing systems. Proceedings of the 2002 IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics 30, 276–289 (2000)

    Google Scholar 

  11. Stafylopatis, A., Blekas, K.: Autonomous vehicle navigation using evolutionary reinforcement learning. European Journal of Operational Research 108, 306–318 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kamei, K., Ishikawa, M. (2004). A Genetic Approach to Optimizing the Values of Parameters in Reinforcement Learning for Navigation of a Mobile Robot. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_178

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_178

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics