Skip to main content

Gaussian Process Regression with Fluid Hyperpriors

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

A Gaussian process model can be learned from data by identifying the covariance matrix of its sample values. The matrix usually depends on some fixed parameters called input length scales. Their estimation is equivalent to finding the corresponding diffeomorphism of the process inputs. Spatially variable length scales are difficult to estimate in the absence of good a priori values. We suggest a fluid-based nonlinear map of the process inputs and our experiments validate such a model on a synthetic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberty, J., Carstensen, C., Funken, S.A., Klose, R.: Matlab Implementation of the Finite Element Method in Elasticity. Computing 69(3), 239–263 (2002)

    Article  MathSciNet  Google Scholar 

  2. Christensen, G.: Deformable Shape Models for Anatomy. Ph.d. thesis, Washington University (1994)

    Google Scholar 

  3. Gibbs, M.N.: Bayesian Gaussian Processes for Regression and Classification. Ph.d. thesis, Cambridge University (1997)

    Google Scholar 

  4. Grenander, U., Miller, M.I.: Computational Anatomy: An Emerging Discipline. Quart. Appl. Math. LVI(4), 617–694 (1998)

    Google Scholar 

  5. Kärkkäinen, T., Heikkola, E.: Robust Formulations for Training Multilayer Perceptrons. Neural Computation 16(4), 837–862 (2004)

    Article  MATH  Google Scholar 

  6. Neal, R.M.: Priors for Infinite Networks. Technical Report CRG-TR-94-1, The University of Toronto (1994)

    Google Scholar 

  7. Paciorek, C.J.: Nonstationary Gaussian Processes for Regression and Spatial Modelling. Ph.d. thesis, Carnegie Mellon University (2003)

    Google Scholar 

  8. Rasmussen, C.E.: Evaluation of Gaussian Processes and Other Methods for Nonlinear Regression. Ph.d. thesis, The University of Toronto (1996)

    Google Scholar 

  9. Wollny, G., Kruggel, F.: Computational Cost of Nonrigid Registration Algorithms Based on Fluid Dynamics. IEEE Trans. on Medical Imaging 21(8), 946–952 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Girdziušas, R., Laaksonen, J. (2004). Gaussian Process Regression with Fluid Hyperpriors. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics