Skip to main content

Stochastic Context-Free Graph Grammars for Glycoprotein Modelling

  • Conference paper

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Implementation and Application of Automata (CIAA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3317))

Included in the following conference series:

Abstract

The rapid progress in proteomics has generated an increased interest in the full characterization of glycoproteins. Tandem mass spectrometry is a useful technique. One common problem of current bioinformatics tools for automated interpretation of tandem mass spectra of glycoproteins is that they often give many candidates of oligosaccharide structures with very close scores. We propose an alternative approach in which stochastic context-free graph grammars are used to model oligosaccharide structures. Our stochastic model receives as input structures of known glycans in the library to train the probability parameters of the grammar. After training, the method uses the learned rules to predict the structure of glycan given a composition of unknown glycoprotein. Preliminary results show that integrating such modelling with the automated interpretation software program, GlycoMaster, can very accurately elucidate oligosaccharide structures with tandem mass spectra. This paper describes the stochastic graph grammars modelling glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abe, N., Mamitsuka, H.: Predicting protein secondary structure using stochastic tree grammars. Machine Learning 29, 275–301 (1997)

    Article  MATH  Google Scholar 

  2. Aebersold, K., Mann, M.: Mass spectrometry-based protemics. Nature 422, 198–207 (2003)

    Article  Google Scholar 

  3. Bartels, C.: Fast algorithm for peptide sequencing by mass spectroscopy. Biomed. Environ. Mass Spectrom. 19, 363–368 (1990)

    Article  Google Scholar 

  4. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  Google Scholar 

  5. Cai, L., Malmberg, R.L., Wu, Y.: Stochastic modeling of RNA pseudoknotted structures: a grammatical approach. Bioinformatics 19, i66–i73 (2003)

    Article  Google Scholar 

  6. Chen, T., et al.: A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J. Comp. Biology 8, 325–337 (2001)

    Article  Google Scholar 

  7. Churchill, G.A.: Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 51, 79–94 (1989)

    MATH  MathSciNet  Google Scholar 

  8. Cook, D.J., Holder, L.B.: Graph-Based Data Mining. IEEE Intelligent Systems 15, 32–41 (2000)

    Article  Google Scholar 

  9. Cooper, C.A., Gasteiger, E., Packer, N.H.: GlycoMod - A software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1, 340–349 (2000)

    Article  Google Scholar 

  10. Dehaspe, L., Toivonen, H., King, R.D.: Finding Frequent Substructures in Chemical Compounds. In: Proceeding of the Fourth International Conference of Knowledge Discovery and Data Mining, pp. 30–36 (1998)

    Google Scholar 

  11. Dell, A., Morris, H.R.: Glycoprotein Structure Determination by Mass Spectrometry. Science 291, 2351–2356 (2001)

    Article  Google Scholar 

  12. Dupplaw, D., Lewis, P.H.: Content-Based Image Retrievel with Scale-spaced Object Trees. In: Proceedings of Storage and Retrieval for Media Databases. LNCS, vol. 3972, pp. 253–261. Springer, Heidelberg (2000)

    Google Scholar 

  13. Ethier, M., Saba, J.A., Ens, W., Standing, K.G., Perreault, H.: Automated structural assignment of derivated complex N-linked oligosaccharides from tandem mass spectra. Rapid Commun. Mass Spectrom. 16, 1743–1754 (2002)

    Article  Google Scholar 

  14. Gaucher, S.P., Morrow, J., Leary, J.A.: A saccharide topology analysis tool used in combination with tandem mass spectrometry. Anal. Chem. 72, 2231–2236 (2000)

    Article  Google Scholar 

  15. Goldman, N., Thorne, J.L., Jones, D.T.: Using Evolutionary Trees in Protein Secondary Structure Prediction and Other Comparative Sequence Analyses. J. Mol. Biol. 263, 196–208 (1996)

    Article  Google Scholar 

  16. Harvey, D.H.: Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 35, 1178–1190 (2000)

    Article  Google Scholar 

  17. KEGG LIGAND Database (Japan), http://www.genome.ad.jp/ligand/

  18. Knudsen, B., Hein, J.: RNA Secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics 15, 446–454 (1999)

    Article  Google Scholar 

  19. Konig, S., Leary, J.A.: Evidence for linkage position determination in cobalt coordinated pentasaccharides using ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 1125–1134 (1999)

    Article  Google Scholar 

  20. Krogh, A., Saira Mian, I., Haussler, D.: A hidden Markov model that finds genes in E.coli DNA. Nuc. Ac. Res. 22, 4768–4778 (1994)

    Article  Google Scholar 

  21. Lukashin, A.V., Bodovsky, M.: GenMark. hmm: new solutions for gene finding. Nuc. Ac. Res. 26, 1107–1115 (1998)

    Google Scholar 

  22. Ma, B., et al.: PEAKS: Powerful Software for Peptide De Novo Sequencing by MS/MS. Commun. Mass Spectrom. 268, 78–94 (1997)

    Google Scholar 

  23. Mamitsuka, H., Abe, N.: Predicting Location and Structure of Beta-Sheet Regions Using Stochastic Tree Grammars. ISMB-94 17, 2337–2342 (2003)

    Google Scholar 

  24. Mizuno, Y., Sasagawa, T.: An automated interpretation of MALDI/TOF postsource decay spectra of oligosaccharides. 1. Automated Peak Assignment. Anal. Chem. 71, 4764–4771 (1999)

    Google Scholar 

  25. Rivas, E., Eddy, S.R.: The language of RNA: a formal grammar that includes pseudoknots. Bioinformatics 16, 334–340 (2000)

    Article  Google Scholar 

  26. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. World Scientific, Singapore (1997)

    Google Scholar 

  27. Shan, B., Zhang, K., Ma, B., Zhang, C., Lajorie, G.: Automated structural elucidation of glycopeptides from MS/MS spectra. In: 52nd ASMS Conference (2004) (to be appeared)

    Google Scholar 

  28. Tseng, K., et al.: Catalog-Library Approach for the Rapid and Sensitive Structural Elucidation of Oligosaccharides. Anal. Chem. 71, 3747–3754 (1999)

    Article  MathSciNet  Google Scholar 

  29. Zala, J.: Mass Spectrometry of Oligosaccharides. Mass Spectrometry Reviews 23, 161–227 (2004)

    Article  Google Scholar 

  30. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315–333 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Clarke, F., Ekeland, I.: Solutions périodiques, du période donnée, des équations hamiltonienne. Note CRAS Paris 287, 1013–1015 (1978)

    MATH  MathSciNet  Google Scholar 

  32. Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J. Diff. Eq. 72, 28–55 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a ZZp pseudoindex theory. Annali di Matematica Pura (to appear)

    Google Scholar 

  34. Zhang, C., Doherty-Kirby, A., Huystee, R.B., Lajoie, G.: Investigation of Cationic Peanut Peroxidase Glycans by Electrospray Ionization Mass Spectrometry. Phytochemistry (2004) (accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shan, B. (2005). Stochastic Context-Free Graph Grammars for Glycoprotein Modelling. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds) Implementation and Application of Automata. CIAA 2004. Lecture Notes in Computer Science, vol 3317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30500-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30500-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24318-2

  • Online ISBN: 978-3-540-30500-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics