Abstract
In this paper we prove a lower bound for the maximum state complexity of Deterministic Finite Cover Automata (DFCAs) obtained from Non-deterministic Finite Automata (NFAs) of a given state complexity n, in case of a binary alphabet. We show, for binary alphabets, that the difference between maximum blow-up state complexity of DFA and DFCA can be as small as 2\(^{\lceil \frac{n}{2} \rceil - 2}\) compared to the number of states of the minimal DFA. We conjecture that the lower bound given in the paper is also the upper bound.
Similar content being viewed by others
References
Câmpeanu, C., Păun, A.: Counting The Number of Minimal DFCA Obtained by Merging States. International Journal of Foundations of Computer Science 14(6), 995–1006 (2003)
Câmpeanu, C., Sântean, N., Yu, S.: Finite Languages and Cover Automata. Theoretical Computer Science 267(1-2), 3–16 (2001)
Salomaa, K., Yu, S.: NFA to DFA transformations for finite languages over arbitrary alphabets. Journal of Automata, Languages and Combinatorics 2, 177–186 (1997)
Yu, S.: Regular Languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Berlin (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Câmpeanu, C., Păun, A. (2005). Tight Bounds for NFA to DFCA Transformations for Binary Alphabets. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds) Implementation and Application of Automata. CIAA 2004. Lecture Notes in Computer Science, vol 3317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30500-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-30500-2_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24318-2
Online ISBN: 978-3-540-30500-2
eBook Packages: Computer ScienceComputer Science (R0)